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Nomenclature

n Micro 10

n True efficiency

I1 Acoustic power (watts)

T Pi 3.14159

® Frequency (radians/second)

Po Density (kg/m®)

Bo Convection heat trans. coef. (W/(m* K))

A Signal amplitude (volts)
Paired comparison question duplicates where sample A then B where played

ABAB
and then sample A then B were repeated

ABBA Paired comparison question repeatability test where sample A and then B
were played and at a later time the opposite sampled B then A were played

AC Alternating Current

A Amplitude of the carrier frequency in amplitude modulation

adiR? The adjusted coefficient of determination to account for varying degrees of
freedom

AM Amplitude Modulation CNT drive signal processing method

A Amplitude of the modulation signal in amplitude modulation

AMAC This is the same method as AM

ANSI American National Standards Institute

AP Adaptive Predistortion drive signal processing method

Avg Average or mean

B DC offset (volts)

Cc Speed of sound (m/s)

CNN Convolution Neural Network machine learning model

CNT Carbon Nanotube

CntUP Unprocessed CNT drive signal. This is the same as UP

Cp Specific heat (J/(kg K))

CVD Chemical Vapor Deposition

dB Decibel

DC Direct Current offset CNT drive signal processing method

DCAC This is the same method as DC

DI Directivity Index

DV Dependent Variable in a regression analysis

f Frequency (hertz)

FA Factor Analysis

F. Carrier frequency in amplitude modulation

FCAC Spectral Envelope Decimation. This is the same method as SED

FCAC Spectral Envelope Decimation

FFT Fast Fourier Transform

Fo Modulation frequency in amplitude modulation

HMM Hidden Markov machine learning Model

1\Y% Independent Variable in a regression anaysis

LOgISUC. Regression where the independent variable is categorical

Regression
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L, Sound pressure (decibels)

Ly Sound power (decibels)

MWNT Multi-walled Nanotube

NaN Not a Number

OLS Ordinary Least Squares regression

OTO One Third Octave

p Pico 10°"?
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Abstract

Traditional speakers make sound by attaching a coil to a cone and moving that coil back
and forth in a magnetic field (aka moving coil loudspeakers). The physics behind how to
generate sound via this velocity boundary condition has largely been unchanged for over
a hundred years. Interestingly, around the time moving coil loudspeakers were first
investigated the idea of using heat to generate sound was also known. These
thermoacoustic speakers heat and cool a thin material at acoustic frequencies to generate
the pressure wave (i.e. they use a thermal boundary condition). Unfortunately, when the
thermoacoustic principle was initially discovered there was no material with the right
properties to heat and cool fast enough. Carbon nanotube (CNT) loudspeakers first
generated sound early in the 21% century. At that time there were many questions
unanswered about their place in the sound generation toolbox of an engineer.

The main goal of this dissertation was to continue the development of the CNT
loudspeaker with focus on practical usage for an acoustic engineer. Prior to 2014, when
this effort began, most of the published development work was from material scientists
with objective acoustic performance data presented that was not useful beyond the scope
of that particular publication. For example, low sound pressure levels in the nearfield at
low power inputs was a common metric. Therefore, this effort had three main objectives
with emphasis placed on acquiring data at levels and in nomenclature that would be
useful to acoustic engineers so they could bring the technology to market, if adequate.

1) Investigation into the true power efficiency of CNT loudspeakers
1) Investigation into alternative methods to linearize the pressure response of
CNT loudspeakers

1i1) Investigation into the sound quality of CNT loudspeakers

Overall, it was found that CNT loudspeakers are approximately four orders of magnitude
less power efficient than traditional moving coil loudspeakers. The non-linear pressure
output of the CNT loudspeakers can be linearized with a variety of drive signal
processing methods, but the selection of which method to use depends on a variety of
factors (e.g. amplification architecture available). In general, all methods studied are on
the same order of magnitude power efficiency, but the direct current offset and amplitude
modulation drive signal processing methods are superior in terms of sound quality.

xvii
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1 Introduction

1.1 Motivation of research

The use of heat to generate sound (i.e. the thermoacoustic effect) was first discovered by
Braun 1898 [1] and was later elaborated on by Arnold 1917 [2] to described the perfect
material required to use this effect. Unfortunately, at that time the closest available
material was 700nm thick platinum and its frequency response was below the human
audible range. This lack of sufficient material caused thermoacoustic loudspeaker
development to fall behind that of the modern moving coil loudspeaker. In 2006, Yu et. al
used the relatively new material, carbon nanotubes, to generate acoustic waves up to
3kHz [3]. This demonstration set in motion the need for further development of these
thermoacoustic transducers to understand their place in the market. From 2006 to the
early 2010s most of the development was being done by material scientists. While their
work was important for the development of the underlying structure, their results were
not acoustic engineer compatible. The results often showed objective performance data in
the near field at low power levels where the sound pressure level (SPL) would likely be
in the background moving more than a few meters away. This drove the need for
development of these devices from the acoustics perspective. If these transducers were
going to be commercially viable there were certain topics that needed more investigation.

Looking back to fall of 2014, it was obvious that the next objective metric needed was
true power efficiency. Barnard et. al were able to generate 111 dBA at 1m at 2kHz, but
that required 6kWpk of input power [4]. This was an important step in acknowledging the
output pressure capability, but it also emphasized the potential efficiency concerns.
Additionally, the data, as with all other publications at that time, was SPL output for a
given electrical power input. That is not a watts-to-watts energy comparison. A
comparison of electrical input power to acoustic power (i.e. a true power efficiency) was
needed. The true power efficiency data was needed for any future modeling effort.
Additionally, at that time there was limited effort put into dealing with the nonlinear
pressure output of the CNT loudspeaker (i.e. the frequency doubling issue). Therefore,
efficiency and linearization were prioritized at the beginning of this dissertation.

As the efficiency and linearization effort was concluded, there were many other aspects
of the technology that needed to be addressed (e.g. durability). After considering the
dissertation’s scope and what the rest of the research group was studying, it made sense
to focus the final portion of this dissertation on the subjective quality of the CNT
loudspeaker. There has never been mention of their sound quality in any published paper,
but to anyone who has ever heard them in person it is obvious that they are inferior to
traditional moving coil loud speakers. To better understand the reason for the difference
required a subjective evaluation.

The purpose of this introduction is to set the stage for why efficiency, linearization, and
sound quality were selected as the topics to focus on. At the beginning of each of the
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following chapters there will be a detailed introduction for that topic. This introduction is
simply an introduction to the dissertation.

1.2 Objectives

The main objective of this dissertation was to characterize CNT loudspeakers with a
focus on generating information (e.g. data and knowledge) that would be applicable to
the acoustics community. The end result being information that the community could use
to determine if CNT loudspeakers could be brought to market for their specific
application. The specific information that this effort planned to discover was power
efficiency data, knowledge about sound pressure linearization methods that do not require
expensive amplification, and sound quality data.

1.3 Explanation of chapters

Chapter 2 is a reproduction of a Journal of the Acoustic Society of America publication
titled Experimental quantification of the true efficiency of carbon nanotube thin-film
thermophones [5]. This publication is the initial work of quantifying the true power
efficiency of the CNT loudspeaker. Prior to this publication only sound pressure at
known distances was published and most of those distances were in the near field. This
led to data that could not be generalized. In order to model performance of a CNT
loudspeaker, the true electrical energy input to output sound power is needed. The
directivity was not measured, but can be assumed to be a monopole for low frequencies.
The power efficiency data along with total harmonic distortion (THD) was presented for
drive signal processing methods amplitude modulation (AM), direct current offset (DC),
and unprocessed (CntUP). Data for a traditional moving coil loudspeaker was also
presented (TradUP).

Chapter 3 is a reproduction of a SAE Technical Paper titled Continued Drive Signal
Development for the Carbon Nanotube Thermoacoustic Loudspeaker Using Techniques
Derived from the Hearing Aid Industry [6]. This publication expanded the work of
Chapter 2 to include two additional linearization methods obtained from the hearing aid
industry. A frequency domain method called spectral envelope decimation (SED/FCAC)
and a time domain method called dynamic linear frequency compression (TCAC) were
demonstrated and their power efficiency and THD were quantified. The importance of
the expansion to these methods was that they do not require a class AB amplifier like DC
nor do they require a high frequency amplifier like AM. These methods can be used with
an inexpensive class D amplifier.

Chapter 4 is currently under review at the Journal of the Audio Engineering Society. This
paper is titled Subjective evaluation of carbon nanotube loudspeaker drive signal
processing methods using single word techniques. This effort used single word spoken
text to evaluate the drive signal processing methods in order to determine which drive
signal processing method is more intelligible on a relative scale and if CNT loudspeakers
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are intelligible on an absolute scale. The study performed a drive-up jury study
comparing the drive signal processing methods AM, CNT loudspeaker unprocessed
(CntUP), DC, Pulse amplitude modulation (PAM), SED, and TradUP. This work will be
the first published subjective performance data for CNT loudspeakers.

Chapter 5 takes the results from the Chapter 4 jury study and compares it to traditional
psychoacoustic metrics. The goal was a “golden metric” that could be used in place of a
full jury study to predict CNT subjective performance. It takes a significant amount of
effort to conduct a jury study. Therefore, having an idea of which psychoacoustic
metric(s) approximate subjective performance can help save development time.

Chapter 6 summarizes the results of the complete effort and attempts to pull out primary
themes and connections between the chapters. Additionally, recommended next steps are
outlined.
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2 Experimental quantification of the true efficiency of
carbon nanotube thin-film thermophones

2.1 Abstract

Carbon Nanotube thermophones can create acoustic waves from 1 Hz to 100 kHz. The
thermoacoustic effect that allows for this non-vibrating sound source is naturally
inefficient. Prior efforts have not explored their true efficiency (i.e. the ratio of the total
acoustic power to the electrical input power). All previous works have used the ratio of
sound pressure to input electrical power. A method for true power efficiency
measurement is shown using a fully anechoic technique. True efficiency data are
presented for three different drive signal processing techniques: standard alternating
current (AC), direct current added to AC (DCAC), and amplitude modulation of an AC
signal (AMAC). These signal processing techniques are needed to limit the frequency
doubling non-linear effects inherent to carbon nanotube thermophones. Each type of
processing affects the true efficiency differently. Using a 72 Wi input signal, the
measured efficiency ranges were 4.3 E-6 — 319 E-6, 1.7 E-6 — 308 E-6, and 1.2 E-6 — 228
E-6 percent for AC, DCAC, and AMAC, respectively. These data were measured in the
frequency range of 100 Hz to 10 kHz. In addition, the effects of these processing
techniques relative to sound quality are presented in terms of total harmonic distortion.

2.2 Introduction

Carbon nanotube (CNT) thermophones create sound with heat, as opposed to a traditional
moving coil loudspeaker, which uses a magnet to push and pull a metal coil of wire
attached to a cone. This velocity boundary condition of a traditional speaker’s cone
creates the pressure wave that propagates to the listener’s ear. In contrast, CNT
thermophones use a thin-film that can oscillate its surface temperature at acoustic
frequencies, creating a varying temperature boundary condition. With every heating cycle
the air near the thin-film expands. When the current is removed from the thin-film, it
cools, contracting the surrounding air. The repeated expansion and contraction of the
adjacent air due to the thermal boundary condition creates the pressure wave that
propagates to the listener’s ear. This type of thermoacoustic device is called a
thermophone.

The thermoacoustic effect was first published in 1898 by Braun, demonstrating how heat
can create sound [1]. In the early 1900s, Arnold and Crandall explored this phenomenon
using 700nm platinum, which could only heat and cool at frequencies less than 16 Hz,
below the human audible range [2]. A material that could heat and cool quickly enough
did not exist until 1991, when CNT thin-film was discovered [7]. In 2006, Yu et al. were
the first to use the thermoacoustic effect with CNT thin-films and create sound in the
audible range [3].
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Carbon nanotubes have a very low heat capacity per unit area and have been shown to
oscillate their surface temperature at frequencies up to 100 kHz [8]. Without the heavy
magnet of a traditional moving coil loudspeaker, CNT thermophones are useful for
applications where a lightweight speaker is desired. In addition, rare-earth metals,
commonly used to reduce weight of traditional moving coil loudspeakers, are
unnecessary. This makes CNT thermophones a good choice for sustainable loudspeakers.
Application areas may include automotive, aerospace, and defense systems, where weight
is at a premium. CNT thermophones are also flexible and stretchable, which allows them
to be placed over complex geometric surfaces.

Several authors have analytically explored CNT thin-film thermophones [4], [9]-[12].
Xiao et al., were the first to develop a theoretical model of the CNT thermophone’s true
efficiency, given as

o ”fZPinput EQ2-1
Pinput ZPOCCg(TO"'Ta)Z

where 7 is the efficiency, II is the sound power (watts), P, is the total input power
(watts), f is the frequency (Hz), p, is the density of the surrounding gas (kg/m?), c is the
speed of sound in the surrounding gas (m/s), Cp is the specific heat of the surrounding gas
(J/kg K), T, is the ambient temperature (K) of the surrounding gas, and T, is the mean
temperature (K) of the thin film [13]. This model assumes the acoustic wavelength is
much larger than the size of the source (i.e. it radiates as a monopole).

Prior to this effort, however, there has been minimal work measuring the efficiency of
CNT thermophones [13]-[15]. Previous efficiency measurements compared the measured
sound pressure level (SPL) at 1 meter to the total electrical input power into the CNT.
However, in some experiments, the sound pressure level was not measured at 1 m, but
instead measured in the nearfield and estimated at 1 m using spherical spreading. In
addition, previous studies have focused on the low input power regime of CNT
thermophones, on the order of 1 to 10 W,,,. True efficiency is defined as the ratio of
acoustic output power (watts) to the input electrical power (watts). Experimentally
measuring this true efficiency over a range of realistic input power levels is the goal of
this study.

CNT thermophones are non-linear transducers. The non-linearity occurs because the
output SPL is proportional to the square of the input electrical current. This causes a
doubling of frequency between the input and output signals [11], resulting in significant
distortion for broadband content (e.g. speech, music, etc.). Signal processing techniques
such as DC offset, amplitude modulation, and single-sided pulse width modulation have
been shown to significantly reduce this distortion, but these methods require additional
input power [4], [16]. These processing techniques are used to modify the drive signal
going into the CNT thermophone. This work will show a test method for measuring the
true efficiency of thermophones and explore that efficiency using alternating current
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(AC), direct current offset with alternating current (DCAC), and amplitude modulation of
an alternating current (AMAC).

Because pressure is proportional to power (voltage or current squared), the AC input
method produces a doubled output frequency. It is trivial to show this using the power
reduction trigonometric identity. For the case of DCAC, this non-linearity results in an
output pressure of

P(t) ~ B? + 2BAsin(wt) + A2[—=22] EQ2-2
where P is the pressure (pascals) as a function of time, 7 (seconds), A is the peak
amplitude of the signal (volts), B is the amount of DC offset (volts), and @ is the
frequency of the signal (rad/s). The doubled frequency is observed in the third term, the
fundamental frequency appears in the second term, and the first term contributes to waste
DC heating. For AMAC, the input voltage signal is

V(t) = (1 + Aycos(2nFyt)) * Acsin (2rF,t) EQ2-3

which is squared due to the non-linearity of the system. In EQ2-3, V is the voltage (volts)
as a function of time, 7 (seconds), Ay, is the amplitude of the modulated signal (volts), F,
is the frequency of the modulated signal (rad/s), Ac is the amplitude of the carrier signal
(volts), and F¢ is the frequency of the carrier (rad/s). The resulting components when this
input signal is squared are Fy, 2Fy, 2Fc, 2Fc-Fy, 2F c+Fy, 2F+2F )y, and 2F -2F . It is
interesting to note the presence of the 2F), peak and second side lobes at 2F+2F),, and
2F-2F), as these are not created in a linear loudspeaker’s response to AMAC input.

The relative amplitudes of the modulated and carrier signal can also affect the response.
This is typically described with Modulation Index, or the ratio of the modulated to carrier
amplitude. Modulation depth is commonly used to describe modulation index as it is the
percent representation of modulation index. For example, if a 1 Vpk 1000 Hz signal was
modulated by a 2 Vpk 40 kHz carrier signal, the resulting signal would have a 0.5
modulation index or a 50% modulation depth.

Sound quality is also important for loudspeakers and can be a competing parameter with
efficiency in thermophone design [4]. This work evaluates total harmonic distortion
(THD) of the CNT thermophone as a function of many input parameters, such as
frequency, the ratio of signal amplitude to amount of DC offset, the ratio of modulation
frequency to carrier frequency, and modulation index. THD is the ratio of the sum total
acoustical pressure of the 2-6th harmonics to the pressure of the fundamental, or

Sum(pressure of 2 — 6th harmonics) EQ2-4

THD =
pressure of fundamental

High THD results in an audio signal that is distorted and unintelligible. Therefore, the
lowest possible THD as efficiency allows is desired for a high quality sound.

6
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2.3 Carbon nanotube description

The CNT thermophone used for this work was composed of multi walled nanotubes
(MWNT) roughly 100 nm in length, grown on a silicon substrate. The CNT forests were
grown by NanoWorld Laboratories at the University of Cincinnati using a chemical vapor
deposition (CVD) technique [17], [18]. These CNTs were grown in a forest and dry
drawn over two copper rods by researchers at Michigan Tech. The CNT was not wrapped
around the copper rods to prevent destructive interference at high frequencies.
Structurally, the thermophone had six ribbons of CNT, each overlaid with five layers of
thin-film, as shown in Figure 2-1. The total size was 9 cm high by 4.5 cm wide.

Figure 2-1: Picture of the CNT fixture used in this study (left) and a close up of the multiwalled
CNT (right). Six ribbons, each five layers thick, were laid over two 101 copper rods. The CNT
was not wrapped around the copper rods to prevent destructive interference at high frequencies.

2.4 Methods

To measure true efficiency, it was necessary to determine the acoustic power output and
electrical power input to the CNT thermophone. ANSI S12.54 was used to measure the
sound power level (Lw), which was then converted to watts of acoustic power using a
reference power of 1 picowatt [19]. The standard measurement was implemented in a
fully anechoic chamber. The chamber has dimensions of 2.16 m long x 1.5 m wide x 2.16
m high. This limited the radius of a typical hemisphere to below 1 m, so the CNT
thermophone was placed on a rotating table, controlled by a stepper motor, and four
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microphones were located in a 90° elevation arc at a radius of 1 meter from the CNT
thermophone base as shown in Figure 2-2. Rotating the source in this configuration
allowed for a 1 m radius measurement hemisphere. Data were acquired six times for each
test with a 60 degree azimuth spacing to measure the entire hemisphere around the
source. To illustrate the process at a single frequency: a sine wave was played through the
CNT thermophone, data were then acquired simultaneously for five seconds (25
averages) at four elevation angles, the CNT thermophone was rotated 60 degrees in
azimuth, data were again acquired, and this was repeated for six total azimuth locations.
Once all of the locations had been recorded, a single sound power value was calculated.
Because the input signal was a stationary sinusoid, the electrical power was found by
measuring the time-averaged RMS input voltage and current on the leads to the CNT
thermophone. For the AC and DCAC signal processing techniques, PCB 130A23
microphones were used to measure sound pressure. Signal conditioning was provided
internally from a National Instruments PXIe-4497 data acquisition (DAQ) module. For
AMAC and THD measurements, PCB 378CO01 high frequency microphones were used
with external signal conditioners providing gain values of 100. All tests were conducted
in air with a temperature range of 21-29 °C and ambient pressure of 1014-1031 hPa.
Ambient temperature and pressure were monitored throughout all testing to make the
appropriate corrections when computing the sound power correction factor, per the
standard.

Mic 4 Path =——,
Mic 3 Path »*
<+ Micl
/ 4=Mic2
~~ 4—Mic3
CNT =—> —— <= Mic4
I —
+ Voltage/Current
Side View Top View

Figure 2-2: Test setup illustrating the implementation of ANSI S12.54 to measure average
pressure around the CNT thermophone. Four elevation microphones took data at six azimuth
locations (i.e. every 60 degrees-dashed lines) for each test.

Per ANSI S12.54, section 8.1.1b, if the source emits an A-weighted directivity index (DI)
exceeding 5 dB in any direction, more microphones should be localized in that area. For

www.manaraa.com



example, the A-weighted DI in the elevation angle (i.e. between mic 4 and mic 1) is
shown in Table 2-1. To account for this potential source of error, more microphones were
localized in the area of high SPL for a single test. Figure 2-3 shows the standard 20
microphone locations for the ANSI S12.54 and the modified test locations. Due to testing
time and equipment limitations, the modified test was only completed once and an Ly
correction factor for each frequency was computed (Table 2-1). The correction factor was
applied to all other data which were acquired with the standard locations shown in Figure
2-3. Because the source geometry and, therefore, its directivity were unchanged
throughout the testing, this correction process produced repeatable results, while
minimizing testing time.

Table 2-1: Sound pressure level between microphone locations 4 and 1 for a total input power of
72 Wrms and the correction factor applied to all sound power results to correct for the error from
the standard microphone locations in ANSI S12.54 while testing a directional source.

Low Frequency Region

Frequency (Hz) | 100 125 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800

SPL Difference

(dBA re 20uPa) 52| 36 -14 ] 23| -12 33 -1.1 54| -15 23

Lw Correction
(dB re 1e-12W 0.2 0.2 0.2 0.2 0.2 -03 0.2 -0.1 -0.1 0.2

High Frequency Region

Frequency (Hz) | 1k 13k | 1.6k 2k 2.5k | 3.2k 4k Sk 6.3k 8k | 10k

SPL Difference

(dBA re 20uPa) 1.3 38 52 6.6 8.5 17.1 | 324 | 28.1 28 264 1299

Lw Correction
(dB re 1e-12W -0.1 04 04 0.3 0.3 04 0.7 -0.6 -0.6 23 -1.8
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Figure 2-3: An isometric view of the standard 20 microphone locations outlined in ANSI S12.54
Annex B (left) and an isometric view showing the microphone locations used to compute the
correction factor (right). The CNT thermophone is represented as a small square in the center of
the hemisphere.

To measure the input power, the same PXIe-4497 module was connected to a 111.5x
attenuator to acquire voltage and a Fluke 80i-110s clamp-on current probe was used to
measure current. Because CNT thermophones are not pure resistors above 10 kHz
(Figure 2-4), measuring the crosspower spectrum of these two signals allowed for easy
computation of the true power at all frequencies. Figure 2-4 shows an example of the
electrical impedance of the CNT thermophone used in this study.

200 . —— : —_—

m— R eal
——Imag
---- Inductance = 0.3 mH

o

=]
T
1

Amplitude (92)

o
o
T

-50 L L P S T T T i
100 1000 10000

Frequency (Hz)

Figure 2-4: Impedance for the CNT thermophone used in this work showing the deviation from
pure resistance above 10 kHz. Inductance plays an important role in the 10-20 kHz range, while a
more complicated impedance model must exist at frequencies greater than 20 kHz. White noise
10 Hz to 100 kHz was played through the thermophone with total input power of 10 Wrms. 100

10
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averages were taken and the resulting inductance was estimated at 0.3 mH for frequencies less
than 20 kHz.

A LabView code was written to run an automated ANSI S12.54 sound power test using a
.wav file input. The sound power level output (L) and electrical input (watts) were
stored. MATLAB was used to process the data. For the AC signal processing technique,
data were obtained using pure sine wave inputs at one—third-octave (OTO) band center
frequencies ranging from 100 Hz to 20 kHz. Frequency and total input power were
varied, because these are the two most important independent variables in Xiao’s
efficiency equation (EQ2-1) [13]. Since the sound pressure generated from CNT
thermophones is proportional to the square of the input voltage signal, the efficiency for
this signal processing technique was computed as the acoustic power (watts) in the
second harmonic divided by the electrical input power in the fundamental,

.. Acoustic Power at The Second Harmonic _
AC Efficiency = * 100 EQ2-5

Electrical Input Power at The Fundamenntal

For DCAC, data were acquired at the same frequencies, but with varying amplitude ratios
of DC current (B) to alternating current (4). These parameters were varied because of
their influence in EQ2-2. For the constant amplitude case, the AC amplitude (4) was
unchanged and the DC amplitude (B) was varied to obtain different ratios of B/A4. For the
constant input power case, both B and 4 were manipulated to obtain different ratios of
B/A, all with the same amount of total electrical input power to the CNT thermophone.
The efficiency for DCAC was computed using

Acoustic Power Out at the Fundamental EQ2-6

DCAC Eff.= 100

Sum of Electrical Power Into The Fund. and the DC of fset

For AMAC, data were acquired at the same frequencies but for varying ratios of the
carrier frequency (F¢) to modulated frequency (Fy). The efficiency for AMAC was
computed as

. . _ Acoustic Power Out at the Fundamental EO2-7

AMAC EfflCleTlcy " Sum Of All Power Into The CNT Thermophone *100 Q
noting that the denominator is the sum of all frequencies. Additionally, modulation depth
was studied by looking at the effects of the ratio of the carrier signal amplitude (4.) to the
modulated signal amplitude (4).

THD was not computed for the AC signal processing technique as no acoustic waves are
produced at the fundamental. Thus THD is theoretically infinite for this processing
technique (i.e. the denominator is approximately zero, to within the noise floor of the data
acquisition system, for EQ2-4. THD was calculated for the DCAC and AMAC using the
2-6th harmonics because there is no significant contribution to the total power from the
higher harmonics.

11
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2.5 Results and discussion

The results from the low and high input power AC case are shown in Figure 2-5. The true
efficiency of a CNT thermophone varies from 4.3 E-6 to 319 E-6 percent between 100 Hz
and 10 kHz for 72 Wy total input power. This is theoretically the peak efficiency case
for this device at this input power, because all of the acoustical power in the second
harmonic (i.e. the doubled frequency) is directly from the electrical power in the
fundamental frequency with no signal processing. DCAC requires DC electrical power to
shift the signal and AMAC requires high frequency electrical power to produce the
carrier frequency. Therefore, both of these processing techniques were expected to
decrease the efficiency of the thermophone.

E| * Experimental 2nd Harmonic Efficiency-6.3 Wrms
[| ——Experimental Fit-6.3 Wrms

F -+ Theoretical 2nd Harmonic Efficiency-6.3 Wrms(Xiao 2011
| O Experimental 2nd Harmonic Efficiency-72 Wrms O
—-©-Experimental Fit-72 Wrms _,-'O

102 - ©- Theoretical 2nd Harmonic Efficiency-72 Wrms(Xiao 2011) O E

Power Efficiency (%)

10 L L L 1 1 1 T |
100

1000 10000
Input Frequency (Hz)

Figure 2-5: AC true efficiency data for total input power of 6.3 Wrms and 72 Wrms. This is the
ratio of acoustic power generated in the second harmonic divided by the electrical power in the
fundamental (EQ2-5). The resulting fits of the experimental data are shown in EQ2-8 & EQ2-9.
The experimental data is consistent with the theoretical model from Xiao for lower frequencies
[13]. Note: the lower power 6.3 Wrms data was only taken from 250 to 20,000 Hz.
The fit for the AC case with 6.3 Wms input power (Figure 2-5) is

Power Efficiency (%) = 50E — 9 = f077 EQ2-8

where f is the frequency in Hz and the R? value is 0.76. The fit for the AC case with 72
Wi input power (Figure 2-5) is

Power Efficiency (%) = 201E — 9 = f085 EQ2-9

12
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where f is the frequency in Hz and the R? value is 0.84. The values used to compute the
Xiao efficiency, from EQ2-1, are shown in Table 2-2.

Table 2-2: Values used to compute the Xiao efficiency. Convective heat transfer coefficient, 3,
was obtained from Xiao et al. for a stack of 5 thin films as it was not obtained experimentally
13].

po (kg/mv’) | c (m/s) | Cp J/(kg K)) | Ty (K) | Ty (K) | Bo (W/(m K)) | S (m?)

1.1764 343 1.00643E3 | 297.15 | Pinput 66 0.017
26,8

The experimental data agreed well with EQ2-1 while the source radiated in a monopole-
like pattern at frequencies below 1,600 Hz. At frequencies higher than 1,600 Hz, the
height of the source, 9 cm, is large with respect to a wavelength and the source begins to
become directional. When comparing the two power level efficiencies in Figure 2-5 it
was observed that increasing power increases efficiency, as expected from EQ2-1.

A standard moving coil loudspeaker was tested as a baseline and the results are shown in
Table 2-3. The moving coil loudspeaker was a custom-made PVC pipe speaker with an
Axon 6s1 6-1/2" Shielded Midbass, an Audax DTW100TI25 4 Ohm 1" Dome tweeter,
and a crossover frequency of approximately 4 kHz [20]. Efficiency for this test was
calculated using

Acoustic Power Out at The Fundamental + 100 EQ2_10
Electrical Power In The Fundamental

Standard Ef ficiency =

Table 2-3: Efficiency & THD results for a standard moving coil loudspeaker. Efficiency was
calculated using EQ2-10. Total input power was 0.6 Wrms. THD was calculated with Eqn.
EQ2-4.

Low Frequency Region

Frequency (Hz) | 100 125 160 | 200 | 250 315 400 | 500 | 630 | 800

Efficiency (%) | 041 | 038 ] 038 | 027 | 023 | 031 | 0.32 ] 0.39 | 045 ] 0.67

THD (%) 165 137 | 134 ] 1.10 1 098 | 060 | 051 | 0.89 ] 0.69 | 0.77

High Frequency Region

Frequency (Hz) | 1k | 1.25k | 1.6k | 2k | 2.5k | 3.15k | 4k Sk ] 63k | 8k | 10k

Efficiency (%) | 021 | 038 | 022 | 020 | 0.18 | 0.10 | 0.11 | 0.15 ] 0.14 ] 0.08 | 0.07

THD (%) 102 ] 096 | 0.85]046 ] 054 ] 040 | 059 ] 026 ] 091 | 1.81 | 0.87
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The standard speaker had an efficiency ranging from 7 E-2 to 67 E-2 percent. In
approximate terms, the CNT thermophone was four orders of magnitude less efficient
than the traditional moving coil loudspeaker.

For the second signal processing technique, DCAC, Figure 2-6 and Figure 2-7 show the
results for constant amplitude and constant input power, respectively.

10° v T .
E| —<—B/A=0.05 Power In=6.38Wrms|
[|—-B/A=0.15 Power In=6.64Wrms|
| —=%—B/A=0.30 Power In=7.55Wrms|
| ——B/A=0.50 Power In=9.76Wrms|
——B/A=0.75 Power In=14.1Wrms|
10 | -=-B/A=1.00 Power In=20.3Wrms|
F| -©-B/A=1.25 Power In=28.6Wrms|

[|-A-B/A=1.60 Power In=44.1Wrms|
|-+ B/A=2.00 Power In=67.7Wrms|
|| -©-B/A=2.50 Power In=108Wrms
——B/A=3.00 Power In=158Wrms

=
S
&

Power Efficiency (%)
3
&
T

B/A

-8 1 L 1 L 1 L PR |
10100

1000 10000
Input Frequency (Hz)

Figure 2-6: DCAC true efficiency data for a constant amplitude. The signal amplitude (A) was
held constant while the amount of DC offset (B) was varied. Efficiency was computed with
EQ2-6. Efficiency is shown to increase significantly with increased power, as expected.
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Figure 2-7: DCAC efficiency data for a constant power. The signal amplitude (A) and amount of
DC offset (B) were both varied to get different values of B/A while keeping the total power
constant at 72 Wrms. Efficiency was computed using EQ2-6. Here an optimal ratio of B/A, in
terms of maximum efficiency, is shown at a value of about 0.62.

Figure 2-6 illustrates a diminishing return on increasing the amount of DC offset (B).
Once the ratio of B/A4 reaches 0.75, the increase in efficiency for the added power is
marginal. Based on Figure 2-7, for a constant input power, a B/4 ratio of 0.62 is the most
optimal ratio for efficiency. The efficiency for this ratio varies from 1.69 E-6 to 308 E-6
percent between 100 Hz and 10 kHz with 72 Wy total input power.

Upon exploring Figure 2-6 & Figure 2-7, a more distinct comparison between the effects
of varying B vs 4 was desired. To achieve this, a single 1 kHz sine wave was input into
the thermophone for two scenarios: holding 4 constant while changing B and holding B
constant while changing A. Figure 2-8 demonstrates that increasing B for a constant 4
does not increase the efficiency of the CNT thermophone. Instead, increasing A4 for a
constant B is a more efficient way of increasing the true power efficiency. Ultimately,
DCAC in application would be hindered because it requires a class A/B amplifier to
satisfy the need for DC offset.
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Figure 2-8: Data comparing the efficiency effects of holding the signal amplitude (A) constant
while changing the amount of DC offset (B) vs holding B constant and changing A. The first
value for each data point is the amount of power into the CNT thermophone and the second value
is the sound power output in the 1 kHz band. Efficiency was computed using EQ2-6. All data
points were obtained using a 1 kHz sine wave.

For the AMAC technique, Figure 2-9 demonstrates the frequency domain acoustic output
of the CNT thermophone with the frequency axis normalized by the modulation
frequency. The modulated signal and its second harmonic are shown at values of F/Fn,
equal to 1 and 2, respectively. The carrier frequency in this example is 15 times higher
than the modulation frequency. The carrier frequency is doubled and is seen at a
normalized frequency of 30 with four dominant side lobes. The fundamental at F/Fr, = 15
and fourth harmonic at F/Fn, = 60 are not predicted by theory, but are assumed to be
artifacts of imperfect signal recreation.
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Figure 2-9: An example of the acoustic response of a CNT thermophone normalized to the
modulation frequency. In this example, the carrier frequency is 15 times larger than the
modulation frequency.

Figure 2-10 shows the AMAC efficiency of a CNT thermophone varies from 1.24 E-6 to
228 E-6 percent with 72 Wy input power. It was found that varying the carrier
frequency had no effect on the efficiency. Practically, amplitude modulation is difficult to
use, because it requires an amplifier with high enough frequency output to power the
carrier frequency. The human hearing range extends to 20 kHz, meaning the AMAC
carrier frequency should be greater than 20 kHz to be out of the range of hearing. Many
common class D amplifiers limit their output frequency to 20 kHz, which means
AMAC s utility is limited in the current market.
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Figure 2-10: AMAC efficiency data. A modulated signal (Fm) was varied with carrier frequency
(Fc). The modulation index for all tests was 1 and had a total input power of 72 Wrms. Efficiency
was calculated with EQ2-7 and was not affected by varying the carrier frequency (Fc).

Figure 2-11 illustrates the effects of modulation depth. The optimal efficiency is found at
an amplitude modulation ratio of 1.5; however, THD effects also need to be taken into

account.
10°F T T T T T T
F[~5-800 Hz
F|——4 kHz
10 |
L
2
f=4
2
S
i}
5]
3
o
o
10° C
6 1 I I ] | !
1079 0.5 1 1.5 2 25 3 35

Modulation Index

Figure 2-11: Experimental data illustrating the effects of varying modulation index. 72 Wrms
total input power was used and efficiency was calculated with EQ2-7.
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Figures 12 & 13 compare the THD for the DCAC method. They demonstrate that
increasing B/A decreased THD, but there was a diminishing return; the more B/A4
increased the less reduction in THD was observed. Since THD does not have a threshold
level where content becomes intelligible, the value of B/A required for an acceptable level
of THD will be subjective. Based on optimal efficiency and EQ2-4, a B/A level of 0.62
produces THD in the 43-93% range. A B/A ratio of 0.62 created subjectively intelligible
content for the author, but the THD was roughly 65 times higher than a standard moving
coil loudspeaker (Table 2-3). It should be noted that intelligibility and high fidelity are

not the same thing.

160

140

120

%)

S

& 100
80
60
40

20

—<-250 Hz
—-400 Hz
—*—630Hz
——1000 Hz
——1600 Hz
—5-2500 Hz H
——4000 Hz
—A-6300 Hz
—7—10000 HzH

1
0.5 (9.8 Wrms)

1
1 (20 Wrms)

1.5 (44 Wrms)
B/A (Power In)

1
2.5 (108 Wrms) 3 (158 Wrms)

Figure 2-12: Data comparing THD for different frequencies and ratios of B/A for different input
power levels. A was held constant and B was increased. THD was computed with EQ2-4.
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Figure 2-13: Data comparing THD for varying frequencies and ratios of B/A. In this case B and A
were manipulated to get a constant power of 72 Wrms input to the CNT thermophone for each
case. THD was computed with EQ2-4.

Figure 2-14 demonstrates that THD for AMAC varies from 22-95%. For certain higher
frequencies where the carrier was a harmonic of the modulated frequency, THD was
significantly higher, but this should not cause any practical issues as long as the carrier is
above 20 kHz. From a modulation index perspective, THD increased rapidly as
modulation index was increased (Figure 2-15). Therefore, while the optimal modulation
index for efficiency is 1.5, the THD increased significantly from 1 to 1.5. A modulation
index of 1.0 is the best compromise between efficiency and THD.
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Figure 2-14: THD data for AMAC. The lack of correlation in the high frequency region is a result
of the carrier frequency being at a harmonic of the fundamental. Therefore, the THD was
artificially increased by the carrier. THD was computed with EQ2-4.
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Figure 2-15: Data showing the effects on THD for varying modulation index. THD was computed
with EQ2-4.
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A summary comparison of AC, DCAC, and AMAC is shown in Table 2-4. As expected,
the AC case is the most efficient, but DCAC & AMAC efficiencies are on the same order
of magnitude. In terms of THD, AMAC created slightly lower THD, but was the least
efficient.

Table 2-4: Summary of experimental data for AC, DCAC, and AMAC signal processing
techniques. The total input power for all tests was 72 Wrms with frequency ranges of 100 Hz to
10 kHz. Note that the efficiency for the AC case is the second harmonic efficiency.

Efficiency (u%) THD (%)
AC 4.3-319 ~ 00
DCAC 1.69 - 308 43-93
(B/A=0.62)
AMAC 1.24 - 228 22-95

2.6 Conclusions

The fundamental true efficiency of an AC signal is approximately zero due to the non-
linearity of CNT thermophones. The second harmonic efficiency of a CNT thermophone
1s 4.3 E-6 to 319 E-6 percent for 72 W input. Experimentally, the efficiency is directly
proportional to the input power, which supports the theoretical model created by Xiao et
al. Additionally, the Xiao et al. model matched experimental efficiency data for
frequencies below 1,600 Hz, where the sound source radiates as a monopole. For DCAC,
the optimal efficiency ratio of DC offset to signal amplitude was found to be 0.62. The
fundamental true efficiency with that ratio is 1.69 E-6 to 308 E-6 percent for 72 Wims
input. This ratio had a THD varying from 43-93%. In terms of AMAC, the fundamental
true efficiency is 1.24 E-6 to 228 E-6 percent. It was found that varying the carrier
frequency had no effect on efficiency. Additionally, the optimal modulation index in
terms of efficiency is 1.5, but when considering THD an index of 1.0 gives the best
efficiency for the least amount of THD of 22-95%. Therefore, AMAC has better THD
than DCAC with slightly lower efficiencies. Ultimately, DCAC and AMAC are less
efficient than a method that would not require additional input power, but the overall
efficiency loss is small, so these methods may prove to be sufficient. Their main
limitation is the requirement of special amplifiers. DCAC required a class A/B amplifier
that can apply a DC offset, and AMAC requires an amplifier that can output frequencies
as high as the sum of the carrier and modulated frequencies. The development of a signal
processing method that does not require any special equipment, and does not reduce
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power efficiency would allow for easier loudspeaker market acceptance of CNT
thermophones.
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3 Continued drive signal development for the carbon
nanotube thermoacoustic loudspeaker using
techniques derived from the hearing aid industry

3.1 Abstract

Compared to moving coil loudspeakers, carbon nanotube (CNT) loudspeakers are
extremely lightweight and are capable of creating sound over a broad frequency range (1
Hz to 100 kHz). The thermoacoustic effect that allows for this non-vibrating sound
source is naturally inefficient and nonlinear. Signal processing techniques are one option
that may help counteract these concerns. Previous studies have evaluated a hybrid
efficiency metric, the ratio of the sound pressure level at a single point to the input
electrical power. True efficiency is the ratio of output acoustic power to the input
electrical power. True efficiency data are presented for two new drive signal processing
techniques borrowed from the hearing aid industry. Spectral envelope decimation of an
AC Signal operates in the frequency domain (FCAC) and dynamic linear frequency
compression of an AC signal operates in the time domain (TCAC). Each type of
processing affects the true efficiency differently. Using a 72 Wrms input signal, the
measured efficiencies in the frequency range from 100 Hz to 10 kHz were 1.01 — 1083 E-
6 and 1.26 — 388 E-6 percent for FCAC and TCAC, respectively. In addition, the effects
of these processing techniques relative to sound quality were evaluated in terms of total
harmonic distortion (THD). It was shown that although the different signal processing
techniques affected the true efficiency, none of them increased the efficiency of the CNT
loudspeaker to the level of current moving coil loudspeakers. Additionally, THD as the
only sound quality metric is incomplete because these processing methods can be
optimized for pure tones but highly distort complex signals like speech and music.
Therefore, a sound quality metric for complex signals is needed. Overall, CNT
loudspeakers show promise for specific applications where weight savings and complex
geometries are required.

3.2 Introduction

Carbon nanotube loudspeakers create sound with heat, not vibration. Their extremely low
heat capacity per unit area allows them to heat and cool up to 100,000 times per second
[8]. Therefore, they have frequency response from 1-100 kHz. This phenomenon is
synonymous with how lightning creates thunder. The energy in the lightning bolt heats
the adjacent air, causing expansion, and therefore a pressure wave propagation. The main
advantages of using CNT to create sound is that it is extremely light weight, flexible, and
slightly transparent. These benefits have peaked interest for their use in automotive,
aerospace, and defense applications.

Braun, Arnold, and Crandall in the late 1800s to early 1900s documented that heating and
cooling a material rapidly creates sound [1], [2]. This phenomenon is known as the
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thermoacoustic effect. Once carbon nanotubes where discovered in the early 1990s [7],
sound generation followed in 2006 [3], but researchers have observed that the output
frequency of the loudspeaker is twice the input [11]. For example, if a 1 kHz sine wave is
input into the CNT loudspeaker a 2 kHz pressure wave is output.

CNT loudspeakers are non-linear transducers. The non-linearity occurs because the
output SPL is proportional to the input power (i.e. voltage squared) not voltage like
traditional loudspeakers. This causes a doubling of frequency between the input and
output signals [11], resulting in significant distortion for broadband content (e.g. speech,
music, etc.). Signal processing techniques such as DC offset, amplitude modulation, and
single-sided pulse width modulation have been shown to significantly reduce this
distortion, but these methods require additional input power [4], [14]. These processing
techniques are used to modify the drive signal going into the CNT loudspeaker.

The result of pressure being proportional to power is that a standard AC input signal
produces a doubled output frequency. It is trivial to show this using the power reduction
trigonometric identity. For the example case of using a DC offset, the input signal is

V(t) = B + Asin(wt) EQ3-1

where V' is the input voltage (volts) as a function of time, ¢ (seconds), 4 is the peak
amplitude of the signal (volts), B is the amount of DC offset (volts), and @ is the
frequency of the signal (rad/s). This non-linearity results in an output pressure
proportional to power (i.e. V?). Squaring EQ3-1 gives

P(t) ~ B2 + 2BAsin(wt) + A?[(—222] EQ3-2
where P is the pressure (pascals) as a function of time, ¢ (seconds), 4 is the peak
amplitude of the signal (volts), B is the amount of DC offset (volts), and @ is the
frequency of the signal (rad/s). The doubled frequency is observed in the third term, the
fundamental frequency appears in the second term, and the first term contributes to waste
DC heating. From this one could conclude that having a high amount of DC offset, B,
will solve the problem as the second term would become dominate with respect to the
third. Unfortunately, using DC offset or amplitude modulation requires additional power
as well as more expensive class A/B amplifiers to be able to create a DC offset or
frequency response above 20 kHz. This additional power requirement reduces the
efficiency.

Several authors have analytically explored CNT thin-film loudspeakers [4], [9]-[12],
[21], [22]. Xiao et al., were the first to develop a theoretical model of the CNT
loudspeaker’s true efficiency, given as
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n = I1 Tf?Pinput EQ3-3

Pinput ZPOCCg(TO"'Ta)Z

where 77 is the efficiency, II is the sound power (watts), Pispu 1s the total input power
(watts), f is the frequency (Hz), p, is the density of the surrounding gas (kg/m?), c is the
speed of sound in the surrounding gas (m/s), Cp is the specific heat of the surrounding gas
(J/kg K), T, is the ambient temperature (K) of the surrounding gas, and T, is the mean
temperature (K) of the thin film [13]. This model assumes the acoustic wavelength is
much larger than the size of the source, i.e. it radiates as a monopole.

Based on strong correlation between Xiao’s model and work by Bouman et al. [5], CNT
loudspeakers have a true efficiency on the order of 10 percent using no drive signal
processing, DC offset, and amplitude modulation. For comparison, a modern moving-coil
driver is on the order of 102 percent efficient [5]. This is a significant difference, but the
main conclusion from Bouman et al.’s work is that the drive signal alone cannot greatly
increase the efficiency as the efficiency without any signal processing is still on the order
of 10°°. While the drive signal cannot increase the efficiency, it does play a large role
with respect to the sound quality of the loudspeaker and the required amplifier [4], [10].
For example, a drive signal method that does not require a DC offset or frequency
response above 20 kHz would allow the CNT loudspeaker to be used with a class D
amplifier making it much easier and less expensive to enter into a wider market of
applications.

Drawing from the hearing aid industry, different possible solutions for solving the
frequency doubling issue without using additional power were explored. Specifically,
dynamic linear frequency compression [23], a time domain method, and spectral envelope
decimation [24], a frequency domain method, allow the frequency content of a signal to
be lowered by an octave. Dynamic linear frequency compression by AVR Sonovation
was the first commercial hearing aid with frequency lowering in 1991. It works by
sampling a signal at the input by a factor of 2 times the sampling rate of the output and
then discarding the additional samples over short windows (e.g., ~10 ms). Spectral
envelope decimation was first used by Alexander in 2013. It takes a Fourier transform
with 75% overlap, decimates the amplitude values by a factor of 2 with respect to
frequency while not modifying the phase of each spectral component, and then inverse
Fourier transforms to reconstruct the time domain signal.

This work will follow the method set by Bouman et al. to measure the true efficiency of
CNT loudspeakers [5] to explore the efficiency using spectral envelope decimation
(FCAC) and dynamic linear frequency compression (TCAC). Additionally, sound quality
with total harmonic distortion (THD) of the CNT loudspeaker will be studied in this
paper. THD is defined as the ratio of the sum total acoustical pressure of the 2nd-6th
harmonics to the pressure of the fundamental, or
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Sum(pressure of 2 — 6th harmonics) EQ3-4

THD =
pressure of fundamental

High THD results in an audio signal that is distorted. Therefore, the lowest possible THD
as efficiency allows is desired for a high quality sound.

While this work specifically explores CNT thin films for use as thermoacoustic
loudspeakers, its application can be applied to any loudspeaker using the thermoacoustic
effects as the pressure will always be proportional to power. Therefore, the recent work
by Aliev et al. and Dashchewski et al. on a variety of all thermoacoustic loudspeaker
materials can still use these methods [25], [26].

The automotive industry could see great benefit from this technology. These
loudspeakers are ultra-lightweight, can conform to any geometry, have no moving parts,
and do not depend on rare earth magnets. These features may allow CNT speakers to
replace traditional moving coil speakers while providing significant weight savings. More
importantly, they enable the placement of speakers in locations not previously possible,
such as on windows or in the headliner. These transducers could also be used in cabin
active noise control because they can be placed in optimal locations due to their small
size and weight. They also present opportunities for active noise control in exhaust
systems, due to their resilience in high temperature environments. Additionally, the heat
generated from these loudspeakers could be recycled for other purposes, such as
windshield deicing. With increased investment in research and development,
thermoacoustic loudspeakers show significant promise for the automotive industry.

3.3 Methodology

The CNT loudspeakers used for this work were composed of multi-walled nanotubes
(MWNT) roughly 100 nm in length, grown on a silicon substrate. The CNT forests were
grown by NanoWorld Laboratories at the University of Cincinnati using a chemical vapor
deposition (CVD) technique. These CNTs were grown in a forest and dry drawn over two
copper rods by researchers at Michigan Technological University. The CNT was not
wrapped around the copper rods to prevent the formation of two sources, one on each
side of the copper rod, creating cancelling pressure waves at high frequency. In order to
ensure a good electrical connection, the CNT was densified onto the copper rods using
denatured alcohol. Figure 3-1 shows an example CNT loudspeaker. Structurally, each
loudspeaker had six ribbons of CNT, each overlaid with five layers of thin-film. The total
size was 9 cm high by 4.5 cm wide.
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Figure 3-1: Picture of the CNT fixture (left) and a close up of the multi-walled CNT (right). Six
ribbons, each five layers thick, were laid over two 101 copper rods. The CNT was not wrapped
around the copper rods to prevent the formation of two sources, one on each side of the copper

rod, creating cancelling pressure waves at high frequency. [5]

To measure the true efficiency, it was necessary to determine the acoustic power output
and electrical power input to the CNT loudspeaker. Following Bouman et al.’s method
[5], ANSI S12.54 was used to measure the sound power level, which was then converted
to watts of acoustic power using a reference power of 1 picowatt [19]. Per ANSI S12.54
sound power is calculated as

_ 1 PoC EQ 3-5
LW = LP - 1010g10m - 1010g 10(%) Q

Where L,, is the sound power (dB re 20 pW), Lpis the average sound pressure from all
measurement locations (dB re 20 pPa), r is the radius of the hemisphere (m), p, is the
density of area (kg/m?), and c is the speed of sound in air (m/s).

The standard measurement was implemented in a fully anechoic chamber. The chamber
has dimensions of 2.16 m long x 1.5 m wide x 2.16 m high. This limited the radius of a
typical hemisphere to below 1 m, so the CNT loudspeaker was placed on a rotating table,
controlled by a stepper motor, and four microphones were located in a 90° elevation arc
at a radius of 1 meter from the CNT loudspeaker base as shown in Figure 3-2. Rotating
the source in this configuration allowed for a 1 m radius measurement hemisphere. Data
were acquired six times for each test with a 60 degree azimuth spacing to measure the
entire hemisphere around the source. To illustrate the process at a single frequency: a sine
wave was played through the CNT loudspeaker, data were then acquired simultaneously
for five seconds (25 averages) at four elevation angles, the CNT loudspeaker was then
rotated 60 degrees in azimuth, data were again acquired, and this was repeated for six
total azimuth locations. Once all of the locations had been recorded, a single sound power
value was calculated. Because the input signal was a stationary sinusoid, the electrical
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power was computed by measuring the time-averaged root-mean-square input voltage
and current on the leads to the CNT loudspeaker.

PCB 130A23 microphones were used to measure sound pressure. Signal conditioning
was provided internally from a National Instruments PXIe-4497 data acquisition (DAQ)
module. All tests were conducted in air with a temperature range of 21-29 °C and
ambient pressure of 1014-1031 hPa. Ambient temperature and pressure were monitored
throughout all testing to make the appropriate corrections when computing the sound
power correction factor, per the standard.

Mic 4 Path =—
Mic 3 Path »*
<+— Micl
/. =Mic2
~~ 4—Mic3
CNT =—> —— <= Mic4
I —
+ Voltage/Current
Side View Top View

Figure 3-2: Test setup illustrating the implementation of ANSI S12.54 to measure average
pressure around the CNT loudspeaker. Four elevation microphones took data at six azimuth
locations (i.e. every 60 degrees-dashed lines) for each test. [5]

Per ANSI S12.54, section 8.1.1b, if the source emits an A-weighted directivity index (DI)
exceeding 5 dB in any direction, more microphones should be localized in that area. To
account for this potential source of error, more microphones were localized in the area of
high SPL for a single test. Figure 3-3 shows the standard 20 microphone locations for the
ANSI S12.54 and the modified test locations. Due to testing time and equipment
limitations, the modified test was only completed once and a sound power correction
factor for each frequency was computed (Table 2-1). The correction factor was applied to
all other data that were acquired with the standard locations shown in Figure 3-3.
Because the source geometry and, therefore, its directivity were unchanged throughout
the testing, this correction process produced repeatable results, while minimizing testing
time.
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Figure 3-3: An isometric view of the standard 20 microphone locations outlined in ANSI S12.54
Annex B (left) and an isometric view showing the microphone locations used to compute the
correction factor (right). The CNT loudspeaker is represented as a small square in the center of
the hemisphere. [5]

To measure the input power, the same PXIe-4497 module was connected to a 111.5x
attenuator to acquire voltage and a Fluke 80i-110s clamp-on current probe was used to
measure current. Because CNT loudspeakers are not pure resistors above 10 kHz [5]
measuring the crosspower spectrum of these two signals allowed for easy computation of
the true power (taking phase difference into account) at all frequencies. A LabVIEW
code was written to run an automated ANSI S12.54 sound power test using a wav file
input. The sound power level output and electrical input (watts) were stored. MATLAB
was used to process the data.

For FCAC and TCAC, data were obtained using pure sine wave inputs at one—third-
octave (OTO) band center frequencies ranging from 100 Hz to 20 kHz. Efficiency was
calculated using

FCAC & TCAC Eff — Acoustic Power Out at the Fundamental +100 EQ3-6

Electrical Input Power at Half the Fund.

The acoustic power is created at the fundamental, but the input electrical power is an
octave below the fundamental. Therefore, the efficiency is the ratio of the fundamental
acoustic response to the electrical input at half of the fundamental.

THD was calculated for FCAC and TCAC using the 2nd-6th harmonics because there is
no significant contribution to the total power from the higher harmonics.

3.4 Results

Figure 3-4 shows the efficiency of FCAC and TCAC compared to the second harmonic
AC efficiency. This shows that the FCAC and TCAC processing methods produced an
efficiency of 1.01 E-6 to 1083 E-6 percent and 1.26 E-6 to 388 E-6 percent with 72 Wims
input power, respectively. The FCAC appears to be artificially high for frequencies above
1 kHz. The maximum efficiency should be the second harmonic AC efficiency because
all of electrical energy goes into the second harmonic. For FCAC, there is some energy
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dispersed during the decimation process and therefore it is expected that its efficiency
would be slightly less than the AC second harmonic efficiency. Regardless, the FCAC
and TCAC methods are not orders of magnitude more efficient than the other signal
processing techniques. Their main benefit is that with these pre-processing techniques a
standard off-the-shelf amplifier can be used to power CNT loudspeakers.

10°
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Figure 3-4: Experimental data comparing second harmonic AC efficiency to fundamental FCAC

and TCAC efficiency. 72 wrms total input power was used and efficiency for AC was taken from
Bouman et al. [5] while the efficiency for FCAC and TCAC was calculated using EQ3-6. [27]

Figure 3-5 demonstrates that the THD for FCAC and TCAC vary from 0.68-59% and
1.7-11%, respectively. This is better than the DCAC and AMAC processing techniques
[5], but it should be noted that these are for single frequencies. When the FCAC and
TCAC algorithms are optimized for single frequencies they can create perfect half
frequency content. When processing complex signals these methods are limited. For
example, subjectively using speech and music the FCAC and TCAC produced
subjectively low quality reproduction. Based on that observation, THD is not the best
sound quality metric and a more robust metric is needed that can be used with complex
signals.
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Figure 3-5: Data showing THD for FCAC and TCAC. THD was computed using EQ2-4. [27]

A summary comparison of FCAC, and TCAC is shown in Table 3-1.

Table 3-1: Summary of experimental data for FCAC, and TCAC signal processing techniques.
The total input power for all tests was 72 Wrms with frequency ranges of 100 Hz to 10 kHz.

Efficiency (u%) THD (%)

FCAC 1.01 - 1083 0.68 - 59

TCAC 1.26 - 388 1.7-11

3.5 Conclusions

Two new methods for thermoacoustic loudspeaker drive signal processing were
leveraged from the hearing aid industry. Spectral envelope decimation of an AC Signal
(FCAC) and dynamic linear frequency compression of an AC signal (TCAC) are methods
that can be used with class D amplifiers. There efficiencies were 1.01 E-6 to 1083 E-6
percent and 1.26 E-6 to 388 E-6 percent with 72 Wms input power, respectively. These
efficiency levels are on the same order of magnitude as previously published methods
that require class A/B amplifiers. FCAC and TCAC had THD of 0.68-59% and 1.7-11%,
respectively. While these THD levels are significantly lower than previously published
methods, THD was found to be a poor sound quality metric for complex signals. This
study used single tone signals, but when complex signals (e.g. speech, music) were used
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the result was subjectively poor. A new sound quality metric is needed to be able to
objectively compare thermoacoustic drive signal processing techniques.

3.6 Acknowledgments

I would like to thank the contributions of my advisor, Dr. Andrew R. Barnard, as well as
my Masters/PhD committee members Professor Christopher N. Plummer, Professor
Charles D. Van Karsen, and Dr. Jason R. Blough. Thank you Dr. Joshua Alexander from
Purdue University for your assistance in understanding the time and frequency domain
hearing aid algorithms. Thank you Dr. Vesselin Shanov and your employees at
NanoWorld Laboratories at the University of Cincinnati for growing the CNT forests.
Finally, I would like to acknowledge PCB Piezotronics® for their donation of the
measurement microphones used in this effort.

33

www.manharaa.com




4 Subjective evaluation of carbon nanotube
loudspeaker drive signal processing methods using
single word techniques

4.1 Abstract

Carbon nanotube loudspeakers make sound by generating heat as opposed to vibration. In
this evaluation, paired comparison and modified rhyme test jury study techniques were
used to evaluate the intelligibility of spoken single words processed with different drive
signal processing methods. A jury study was conducted using a novel in-vehicle drive up
format. Ultimately, direct current offset was found to be the most intelligible processing
method for the carbon nanotube loudspeaker.

4.2 Introduction

While the theory for creating sound with heat, as opposed to vibration, was laid out as
early as the late 19th century [1], [2], there have been limited physical devices that utilize
the technology. Well known examples of this include plasma speakers and the generation
of thunder by a lightning strike, but both are rather unwieldy to tame. Fortunately, in
2006 Yu et al. demonstrated a new material, carbon nanotubes (CNT), which could use
the thermoacoustic principle to generate sound [3]. With benefits including that CNT
loudspeakers are extremely lightweight, have formable geometry (i.e. directivity), no
moving parts, no reliance on rare earth metals, and frequency response from DC to
100kHz [8], [13], [28], [29], CNT loudspeakers show much promise in a variety of
applications [30]-[36].

Since the initial work done by Yu et al., much has been revealed about these acoustic
transducers [9], [12], [16], [37]-[49] including development of their base physical
properties [17], [18], [SO]-[57] and the exact makeup of the carbon structure to be used
(e.g. graphene, multi-walls nanotubes, etc..) [25], [S8]-[68]. A notable discovery was that
the CNT loudspeaker’s radiated sound pressure is directly proportional to input electrical
power rather than input electrical voltage such as moving coil loud speakers [11]. This
results in a doubling of frequency content (e.g. if you input a 1kHz electrical voltage
signal into a thermophone, you will hear a 2 kHz sound pressure wave). Additionally,
they are inefficient when compared to traditional moving coil loudspeakers (~1e-6%
power efficiency) [5], [21], [69], [70], the frequency response for open thermophones is
not flat, but logarithmically increases with frequency [11], and they damage easily if not
supported [71]. The CNT loudspeaker remains a positive addition to the limited sound
generation toolbox of audio engineers, but unfortunately comes with significant
restriction on its practical application, primarily to applications where weight savings
and/or custom directivity are important and energy is abundant.
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To date, all of the evaluation of CNT loudspeakers has been objective (e.g. sound
pressure at a known distance, sound power, and total harmonic distortion). This work
evaluates subjective sound quality of these transducers whereby single word spoken text
is used to study the drive signal processing methods. The study utilized a novel drive-up
jury study format that proved to be an effective and safe alternative to traditional in-lab
studies.

4.3 Background

4.3.1 Drive signal processing methods

One of the prominent concerns with CNT loudspeakers is that they double all input
frequency content. This is a trivial issue in the single sine wave case, because if, for
example, a 400Hz sound pressure wave is desired, then a 200Hz electrical sine wave can
be input. Yet what about complex transient signals such as speech or music? To solve this
problem, drive signal processing of the desired audio is required before amplification. To
date, there have been many drive signal processing methods used that all have their own
positives and negatives.

In alphabetical order, the common processing methods are amplitude modulation (AM)
[14], direct current (DC) offset [4], [72], pulse amplitude modulation (PAM) [73], and
spectral envelope decimation (SED) [24].

AM processing is the same as AM radio, where the signal is modulated by a high
frequency carrier wave such that the envelope of the final waveform is that of the original
signal. Important variables for AM processing are the frequency of the carrier wave and
the modulation depth (i.e. the ratio of signal to carrier amplitudes). AM processing can be
used with a class D amplifier, but must have a maximum frequency response of the
carrier plus maximum signal frequency content. For example, the carrier is typically
above 20kHz so humans can’t hear it. Therefore, if a 1kHz sine wave is modulated with a
20kHz carrier, the amplifier needs to have frequency response to 21kHz. This can be
limiting since most commercially available class D amplifiers have low pass filters
incorporated at or near 20kHz. The modeling equation for AM is shown in EQ4-1,

y(t) = (1+Ax(t))*Acsin(2nF - t) EQ4-1

where y is the signal played into the amplifier (volts) as a function of time, 7 (seconds),
A 1s the amplitude of the modulated signal (volts), x(t) is the modulated signal, Ac is the
amplitude of the carrier signal (volts), and Fc is the frequency of the carrier (Hz).
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DC processing takes the signal and applies a static offset. The important parameter for
this processing is the ratio of the offset to the signal amplitude. DC offset requires a class
A/B amplifier which is typically more expensive than a class D amplifier. The modeling
equation for DC is shown in EQ4-2,

y() =B +x(t) EQ4-2

where y is the signal played into the amplifier (volts) as a function of time, t (seconds), B
is the amount of offset (volts), and x(t) is the signal to be modulated.

PAM processing, which is different than pulse width modulation (PWM) [4], takes a
constant duty cycle square wave and varies the amplitude of the pulses such that the
envelope of the final signal replicates the original signal. The important parameters for
this processing method are duty cycle and pulse square wave frequency. This processing
method requires a very high frequency amplifier (e.g. Radio Frequency) which can be
very expensive especially with high power output requirements. The modeling equation
for PAM is shown in EQ4-3,

y(t) = App(t) * x(t) EQ4-3

where y is the signal played into the amplifier (volts) as a function of time, ¢ (seconds), 4,
is the amplitude of the pulse train, p(t) is the unity square wave pulse train at a certain
duty cycle (i.e. percent high versus low), and x(t) is the signal to be modulated.

SED processing was originally developed in the hearing aid industry to pitch shift content
lower so those with high frequency hearing damage could hear the content at a lower
register. It uses the results from 75% overlap Fourier transforms to decimate the
amplitude values by a factor of two while keeping the phase of the spectral lines the
same. The result is then inverse transformed back into the time domain. This method can
be use with common class D amplifiers.

4.3.2 Jury study methods
There were two main goals of this subjective effort:
1) Are CNT loudspeakers intelligible?

(Absolute — Yes/No)
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2) Which processing method is the best to use for intelligibility?

(Relative - Ranked)

The above questions are subjective, so in order to answer them a subjective test is
required. A jury study was conducted and in order to limit the scope and complexity,
single word spoken text was chosen for evaluation. To investigate intelligibility (goal #1
above), a modified rhyme test (MRT) was conducted [74].

In a MRT test, subjects (i.e. jury participants or jurors) listen to speakers pronounce
words (e.g. “The word is send”) and select the word spoken from a list of similar words.
The common table (Table 4-1) has 6 columns and 50 rows with each row being a set of
words with similar phonetic properties. All rows/sets have the same consonant-vowel-
consonant style while varying either the initial or final consonant [75]. While the subject
listens to the word spoken, the six similar words, including the one spoken, are shown on
the screen. The subject then has to select which word was spoken.

Table 4-1: The first three rows of the MRT 300 word list [75]

Went Send Bent Dent Tent Rent
Hold Cold Told Fold Sold Gold
Pat Pad Pan Path Pack Pass

A paired comparison test was chosen to rank the processing techniques (goal #2 above).
The method has been used many times and the methods of processing the data are well
documented [76]. This method requires the subject to listen to two paired samples and
then select an answer based on a prompt. In this case the subject was to answer which one
is more intelligible, but paired comparison can be used for many other prompts (e.g.
which audio clip is more harsh, which audio clip would you prefer your car sound like,
which food sample tastes better, etc.). With this method, it is important to avoid biasing
the subject. For example, choosing which sample is played first is important. It is
recommended to repeat at least a subset of the samples in the opposite order. For
example, if sample “A” was played first and followed by sample “B,” at some point later
in the study the subject should hear B followed by A and answer consistently.
Additionally, it is recommended that there are only two options for the subject to choose
from when answering (e.g. A>B or B>A). Including an option stating that they are the
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same has been known to cause poorer juror performance in any challenging comparison
because they are not forced to make a decision [76, p. 139].

4.4 Methodology

4.4.1 Drive signal processing & Transducers

The drive signals compared in this study were Amplitude Modulation (AM) into a CNT
loudspeaker, Direct Current (DC) offset into CNT, Pulse Amplitude Modulation (PAM)
into CNT, Spectral Envelope Decimation (SED) into CNT, and Unprocessed into both a
traditional moving coil loudspeaker (TradUP) and a CNT loudspeaker (CntUP). For AM,
a carrier frequency of 45kHz was used so that the side bands would be above the audible
range even if modulating 20kHz content. To set the modulation index of the transient
spoken word files, the carrier amplitude was set at a fixed level of the fast a-weighted
level maximum (i.e. LAFmax) for the signal to be modulated. This means that the
modulation index was 1 at the moment when the signal had its maximum LAF level, but
varied throughout the other parts of the signal.

For DC offset, the amount of offset was also set to the LAFmax. For PAM, duty cycle
was set to 10% with a 25kHz square wave carrier frequency. For SED, a blocksize of
1,024 was used on the 48kHz sampling frequency audio with a decimation factor of two.

The unprocessed method was used on a traditional moving coil loudspeaker (TradUP)
and a CNT loudspeaker (CntUP), meaning there was no pre-amplification processing
done. TradUP is linear with output pressure frequency equal to input voltage frequency
while CntUP is nonlinear with output pressure frequency twice that of input voltage
frequency. The traditional loudspeaker used in the study was the author’s estimate of a
well-known lower end monitor. The transducer selected was an Avantone Pro Active
MixCube with built in amplifier (Figure 4-1). The MixCube is an unprocessed full range
driver.
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Frequency Response of Study's Traditional Speaker
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Figure 4-1: Acquired data showing the frequency response (Pa/Volt) for the Avantone Pro Active
MixCube. The data was acquired at 1000 points logarithmically spaced between 20 and 20kHz.
The input was a single sine wave for 20 seconds while the output was averaged for noise
reduction. The distance from loudspeaker to microphone was 1m.

For the CNT loudspeaker, multiwalled carbon nanotube layers with ~ 15nm tube
diameters and 500um tube lengths were drawn from a forest approximately 12mm tall.
Each layer was laid across two 6mm diameter copper rods five layers thick. There were
six stacks of five layers in total over the copper rods for an overall dimension of ~9cm
tall by 4.5cm wide by 75nm thick (Figure 4-2 & Figure 4-3).

Pseudo Frequency Response of Study's CNT Speaker
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Figure 4-2: Acquired data showing the pseudo frequency response (Pa) for the CNT loudspeaker
used in this study. As a result of the frequency doubling, the input voltage is at half the frequency
of the output pressure wave so the common averaged frequency response measurement cannot be
computed. Therefore, the authors decided to present what is more commonly referred to as the
sound pressure linear autopower with constant voltage input as the pseudo frequency response.
The data was acquired at 1000 points logarithmically spaced with input voltage from 10Hz to
9kHz and output pressure between 20Hz to 18kHz. The input was a single sine wave for 20
seconds while the output was averaged for noise reduction. The distance from loudspeaker to
microphone was Im.
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Figure 4-3: Picture of the CNT speaker used in this study. Note the CNT was not wrapped on
both sides of the copper rods (i.e. it was single sided).

Comparing the speakers another way, their step responses were taken (Figure 4-4). The
obvious difference is the incredibly short duration of the CNT loudspeaker pulse. This
was expected. CNT loudspeakers have no moving parts and a frequency response to
100kHz. They can respond faster than a moving coil loudspeaker. Additionally, the
MixCube has an enclosure so it has reflections and resonances as well at better low
frequency response that contribute to a wider step response.
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Step Response Comparison
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Figure 4-4: Step response comparing the CNT loudspeaker (a) to the traditional moving coil
loudspeaker (b). Note the input voltages (y-axis) are different, but they generated a similar peak
output pressure ( ~83dB) for their current amplification settings. Both measurements were taken
at 1 meter distance. The CNT speaker was amplified with a Techron 7224. The Mixcube used its
internal amplifier. The data was acquired at room temperature (~21C).

4.4.2 Sample recording

The spoken MRT word recordings for this study came from the National Institute of
Standards and Technology (NIST), which has high quality recordings of nine speakers (4
females/5 males of varying age) speaking the complete 300 word list as “the word is X”
[77].

To illustrate the complete signal preparation process, the 2700 audio files (9 speakers *
300 words) were acquired from NIST. They were de-noised with spectral noise gating as
the default files had noticeable broadband noise on them and the author did not want to
bring that noise into the processing. The less noisy audio files were processed by all of
the previously described methods. Then those files were played into the CNT speaker via
an AE Techron 7224 1kW A/B amplifier fed by a National Instruments 9269 analog
output card running a custom file playing program. The playback was recorded by a Head
Acoustics HMM II.1 Aachen head 1m away (0.5m for PAM) in a full anechoic chamber.
The data acquisition unit was a Siemens Test Lab SCADAS III with PQA II analog input
cards. For the unprocessed traditional moving coil loudspeaker (TradUP), the de-noised
files were played directly into the built in amplifier on the device. Then both channels of
the recorded binaural files were normalized so that their LAFmax was 0.03 Volts for
export into a +/-1 Volt WAV file. 0.03V was chosen because it was the value that
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allowed for export without clipping of all files. The normalized WAV files were what
was played back to the subject’s headphones during the study.

Throughout the recording process, a top priority was to make sure there was good signal
to noise for each recording. Some of the processing methods (e.g. PAM) were not able to
be amplified well by the AE Techron 7224, because the 25kHz square wave and its
harmonics get attenuated quickly even with an amplifier with ~500kHz roll off. In cases
such as this, the speaker had to be moved closer than 1m in order to get good SNR by the
instrument grade class A 12.7mm microphones in the Aachen head. The high dynamic
range microphones and 24 bit Analog to digital converter on the data acquisition units
helped with this.

To ensure there was no risk of hearing damage to the subject, all 2700 files were played
through the study tablet and headphone pair with Windows system volume at 100%.
During this playback, the headphone output A-weighted sound pressure level was
recorded with a calibrated Larson Davis AEC 206 Headphone Test System. This level
was below 85dBA for all files. Since the study was only ~40 minutes long and the levels
were less than 85 dBA, being a part of the study was safe for the subjects. The OSHA
noise dose limit is 85dBA for 16 hours.

4.4.3 Jury study

As described previously, the jury study had two main sections: a modified Rhyme Test
(MRT) and a paired comparison (PC). Unfortunately, due to the COVID-19 pandemic,
the study was not able to be conducted in a lab. The authors understand that performing a
jury study in a controlled setting with minimal background noise and distraction is
desired [78], but use of the planned lab space was not possible when this study was to be
executed in March of 2020. Therefore, the authors adapted the study to be performed on a
tablet inside of a vehicle and conducted it in August of 2020. The subjects signed up for a
time, drove up to the proctor who was in a parking lot, and the proctor would ask the
required COVID-19 screening questions and then hand the participant a sanitized tablet
with headphones in single-use covers. The tablet used was an 13 Microsoft Surface and
the headphones were Sennheiser HD598SE open-backed over ear headphones. This tablet
amp/headphone pair were quantified (Figure 4-5). The subject completed the study in
their car after which they received $20 in compensation. The subjects were not required
to do anything in regard to their vehicle. They were only highly encouraged to leave their
windows shut and HVAC fan as low as possible, but maintaining comfort was the most
important. However, as the study took place in a parking lot, there were many more
visual distractions than there would have been in an ideal setting with a closed sound
quality test room.
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Frequency Response of Headphones/Tablet Preamp Combination
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Figure 4-5: Acquired data showing the frequency response (Pa/Volt) for the headphones and
computer preamp combination used in this study. The data was acquired at 1000 points
logarithmically spaced between 20 and 20kHz. The input was a single sine wave for 20 seconds
while the output was averaged for noise reduction. The headphones were attached to and

measured with a Larson Davis AEC 206 Headphone Test System connected to a National
Instrument 9234 24 bit ADC.

The software the subject interacted with was a custom written National Instruments
LabVIEW program that guided the subject through the study, played the files, and
exported the results. The software itself had six main parts:

1) Demographics questions
2) Five seconds of background data collected using the tablet microphone

3) Practice rounds with two PC and two MRT example questions. The files
chosen for the PC section were very different for the first round and vary similar
for the second round to help prepare and train the subjects.

4) Paired Comparison - 155 questions
5) Modified Rhyme - 270 questions
6) Feedback section

There was no formal training or demographic requirements of the subjects. The only
requirements were age between 18 and 65 and not be a non-resident alien for tax
purposes for the compensation. Jury members were recruited from a broad demographic
of people to represent a scenario where there is widespread adoption of this technology in
the audio industry. Additionally, the subjects were not required to take a hearing test
before participating. While hearing tests are a popular choice for jury studies, subject
quality for this test was established with different methods described below in the PC
section. This allowed the authors to avoid collecting sensitive medical data.
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The initial goal was a study that would take approximately 30-45 minutes to complete.
For the MRT portion of the study there were 270 questions. 270 divided by the six
methods meant that there could be 45 randomly selected questions from the 2700 pool of
MRT words for each method, making sure they were evenly selected from the nine
speakers. An example of what the screen looked like during the MRT section is shown in
Figure 4-6. Note, the subjects could not repeat hearing the sample in the MRT portion of
the test.

Please select the word....

Pig
Big
Dig
Wig
Rig

Fig

Figure 4-6: Screenshot of the MRT portion of the study

For the PC section, there were six methods to compare (AM, CntUP, DC, PAM, SED,
and TradUP). These methods can be thought of like sports teams that need to play each
other in a tournament. In order for all of the teams to play each other there would need to
be 15 games or in this case 15 pairs where method A competes against method B. As
previously discussed, in paired comparisons the order of samples played matters.
Continuing the sports analogy, this is equivalent to home field advantage. The authors
wanted to test for A being played first (A->B) and also B being played first (B> A) to
check for consistency of subject response as a juror quality metric. This was especially
important since no hearing tests were done with the subjects. Additionally, a few
duplicate pairs were used to test for consistency. This led to 155 questions for the PC
portion. Six methods leads to 15 AB pairs per word so that allowed for six words or 75
total AB pairs. Including 100% duplication of AB and BA that brings the 75 pairs to 150.
On top of that the authors included 5 ABAB duplications. So there were 155 total
questions. The six words were randomly selected from the 2700 options, making sure
each one was a different speaker. An example of what the screen looked like during the
PC section is shown in Figure 4-7. Note, the subjects could repeat hearing the sample in
the PC portion of the test.
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Part Progres:: I

Play Sound A Play Sound B

You can play files multiple times in Part A

e chek the circle by your desired response

A is more clear B is more clear

Figure 4-7: Screenshot of the PC portion of the study

4.5 Results

4.5.1 Demographics and juror quality

Overall, 47 subjects participated in the study. Using the PC portion of the data, subject
quality was evaluated to see which subject datasets should be removed. Six were
removed due to inconsistent ABC response. Meaning, for example, if the subject said A
was better than B which was better than C. Then they also needed to say A was better
than C. Six of the subjects did not do that enough to make their dataset usable. It is
interesting to note that the six removed were all inconsistent with how they ranked CntUP
versus SED versus PAM, hinting that CntUP/SED/PAM likely have similar intelligibility.

Two subject datasets were removed due to insufficient repeatability in AB vs BA
responses. Finally, one additional dataset was subjectively removed by the author due to
a low ABAB duplicate response of 20% correct and low ABBA accuracy of 74%
consistent. In total that left 38 usable datasets.

The resulting demographics are shown in Figure 4-8. The subjects were mostly college
age males with English as their first language, no known hearing issues, and no prior jury
study experience. When asked how they would rank their typical audio listening
experience, where 1 was never listen critically and 5 was always listen critically, a
majority of the time the subjects ranked themselves as a 3 or 4.
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Figure 4-8: Pie charts showing the demographic distribution of the n=38 subjects used in this
study. For listening experience, the higher the number the more critical the subject ranked their
typical speaker listening.

4.5.2 Modified rhyme test

The first step in processing the MRT datasets was to determine the number of correct
answers each method had for each subject. The percent correct for that method for that
subject was then computed. The averaged percent correct for each method over all
subjects was then determined. The results are shown in Figure 4-9. For example, on
average for all subjects the word was correctly selected 80% of the time for CntUP.
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In order to determine which method performed better (i.e. had a higher mean correct
selection percentage), the data was analyzed with a Shapiro test and found not to be
normally distributed. Therefore, a non-parametric Dunn’s test was used with Bonferroni
correction for the p-values. With a Dunn’s test the null-hypothesis is that the means are
the same (i.e. statistically not different). If the alpha value is below 0.05 then it can be
said that there is a statistical difference in the percent correct means. The summarized
results are shown in Table 4-2. The percent correct value was not statistically different
when listening to TradUP versus DC. Interestingly, this was also true for AM vs DC, but
not true for TradUP vs AM (i.e. there was a statistical difference in the mean percent
correct values). In a similar way, CntUP = SED but CntUP > PAM. SED and PAM
percent correct means were not statistically different.
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Figure 4-9: A boxplot of the MRT correct selection data by drive signal processing method.
Higher is better.

Table 4-2: Method rank from MRT selection accuracy data

Rank Method

1 TradUP = DC
2 AM =DC

4 CntUP = SED
5 PAM = SED

Note: An equals sign represents no significant difference (i.e. not
rejecting the null hypothesis). Moving down a row represents
statistical difference (a=0.05)
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The time it took a participant to select an answer for the MRT portion of the study was
also investigated. This data is summarized in Table 4-3. Using a Dunn’s test again,
TradUP and DC were not statistically different in selection time while the other methods
followed a similar trend to the selection accuracy rank data (Table 4-4).

Table 4-3: MRT time to select by method in seconds. Lower is better.

TradUP DC AM PAM SED CnUP
Avg 1.15 1.18 1.28 2.10 1.71 1.89
Stdev 0.86 0.82 0.94 1.71 1.30 1.48

Table 4-4: Method rank from MRT time to select data.

Rank Method

1 TradUP = DC
3 AM

4 SED

5 PAM = CntUP

Note: An equals sign represents no significant difference (i.e. not
rejecting the null hypothesis). Moving down a row represents
statistical difference (0=0.05)

4.5.3 Paired comparison

The first step in processing the PC datasets was to determine the number of wins each
method had versus all other methods for every subject. From this, that subject’s
preference rank was determined. For example, Table 4-5 shows the compiled wins for
participant 1. To illustrate how to read the table, start at column “PAM” and then move
down to row “SED” and note the cell value is 1. This means that PAM won versus SED.
If the cell was 0 it would mean that PAM did not win versus SED. This table was made
for each subject by looking at how many times each method won versus another method.
If the method won a majority of the time in the five meetings, then a 1 was placed in
Table 4-5 in that corresponding cell. Compiling the win table for each participant creates
the subject’s rank. If there was a tie, then both methods shared the higher rank. For
example, if PAM and SED were tied for 4th, then they were both recorded as placing 4th
when computing the average ranking.
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The overall average ranking is shown in Figure 4-10. TradUP was always ranked best at

5 because the average ranking was 5 with a standard deviation of 0. In order to determine
the statistical rank, the non-parametric Dunn’s test had to be use again due to none
normally distributed data. The results of this are shown in Table 4-6. The average rank of
TradUP was not statistically different than DC, but similar to the MRT data, TradUP was
statistically ranked higher on average than AM and AM was not statistically different
than DC. PAM, SED, and CntUP were not statistically different from one another, but
were statistically ranked lower on average than TradUP, DC, and AM.

Table 4-5: Example wins table for participant 1. The axes representation the different signal
processing methods. A value of 1 means that column method beat that row method.

AM DC PAM SED TradUP CntUP
AM 0 1 0 0 1 0
DC 0 0 0 0 1 0
PAM 1 1 0 0 1 1
SED 1 1 1 0 1 1
TradUP 0 0 0 0 0 0
CntUp 1 1 0 0 1 0

PC Average Rank By Method

Rank [5 is best]

. I
. L 1

T T

TradUP AM DC CntUP SED PAM
Processing Method

Figure 4-10: A boxplot of the average rank of the different processing methods based on the PC
data. Higher is better.
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Table 4-6: Method rank from PC data

Rank Method

1 TradUP = DC

2 AM =DC

4 PAM = SED = CntUP

Note: An equals sign represents no significant difference (i.e. not
rejecting the null hypothesis). Moving down a row represents
statistical difference (a=0.05)

Additionally, the number of ABBA inconsistent answers by method was tabulated (Table
4-7). This shows the number of times a given method was involved when the subject
inconsistently answered their preference. The rank trend in Table 4-7 follows that of the
PC rank (Table 4-6). It is interesting to note that TradUP was only part of ABBA
inconsistent response 19 times which is much less than the other methods. The minimal
ABBA inconsistent response for TradUP is expected because it was always ranked the
most intelligible in the PC rank. While the rank data compares the methods relatively, the
value of Table 4-7 is the absolute comparison to 0.

Looking at the data a different way, the numbers of wins each method had against other
methods was tabulated (Table 4-8). Meaning every time an ABBA question pair was
answered consistently the winning method was given a point. The sum of these points is
shown in Table 4-8. The rank trend also matched the trend of the PC rank (Table 4-6),
but had CntUP and PAM in an alternate positions compared to the ABBA inconsistent
answer rank (Table 4-7).

Table 4-7: ABBA inconsistent answers by method. Lower is better.

TradUP DC AM PAM SED CntUP

19 159 197 228 231 270

Table 4-8 Method win count. Higher is better.

TradUP DC AM CntUP SED PAM

1156 767 630 199 139 82

Note. This data includes all correct ABBA answered from all 47 participants.
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The PC portion of the study was also timed. When a new question would start the
software would automatically play sample A and then sample B. The time from when
sample B finished playing until an answered was selected was recorded. This data was
averaged and compiled (Table 4-9). Looking at it statistically again with a Dunn’s test, it
was found that answers for the traditional speaker (i.e. TradUP) were statistically quicker
than all CNT methods (a=0.05). CNT methods were all statistically not different from
one another.

Table 4-9: PC Time to select by method in seconds. Lower is better.

TradUP DC AM PAM SED CntUP
Avg 1.05 1.72 1.98 2.06 1.84 2.20
Stdev 1.32 2.62 2.86 3.03 2.44 3.21

4.6 Conclusions

In conclusion, it was found that a CNT loudspeaker using DC offset processing was just
as intelligible as a traditional moving coil loudspeaker. AM, PAM, SED, and CntUP were
statistically less intelligible than TradUP. However, DC offset requires a class A/B
amplifier which may not always be an option. Using the PC rank data, it was found that
AM was considered equally intelligible as DC and that AM/DC were more intelligible
than PAM/SED/CntUP. Therefore, AM should be used if a high enough frequency
response class D amplifier is an option.

Further, given the circumstances with COVID-19, the execution of a jury study was
shown to be possible using participants’ automobiles and a drive-up test site. This format
led to various random additional variables to account for including rain, wind, and other
nearby drivers. The data led to statistically significant results regarding the intelligibility
of CNT loudspeakers.
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5 Correlation of jury study results and psychoacoustic
metrics

5.1 Abstract

Multiple linear regression was used to determine a weighted set of psychoacoustic
metrics that best correlated to the jury study results discussed in Chapter 4. Thirty-three
metrics, including a new custom metric, were reduced to a non-colinear set of metrics
using factor analysis and principle component analysis. That metric set was iterated over
to determine the optimal metric combination producing the best correlation to the study
results. The resulting best fit included only one metric: The novel Total Harmonic
Distortion for Speech Intelligibility (THDSI). The fit from the final regression was R?=
0.12. In addition to the regression analysis, a modern speech recognition machine
learning model was compared to the jury study results.

5.2 Introduction

The execution of a jury study to understand the subjective response of humans to a
certain stimulus is a laborious process that would ideally be replaced with a
psychoacoustic metric i.e. an objective metric proven too closely follow a subjective
preference. That way when a new stimulus arises there is no need to execute a full jury
study. The stimulus can be processed computationally by the psychoacoustic metric
resulting in an estimate of the subjective response as if a jury study were completed.

The use of psychoacoustic metrics is very common in the field of acoustics. Humans
psychoacoustic response to pressure waves is drastically different than the objective
metric of pressure. On a broad level humans perceive sound differently based on the
frequency and level of the sound, but on a very specific level humans hear sound
differently based on a variety of factors (e.g. how much background noise there is, what
precedes the sound, and even what the human is doing while listening to the sound).
Therefore many psychoacoustic metrics have already been developed. The most common
metrics are weighted sound pressure level (ABA/dBC) and loudness (sones) which seek to
account for the broad frequency and level discrepancies between objective pressure and
human perception. There are many more psychoacoustic metrics which tend to lend
themselves toward specific usage applications. Some examples include (in alphabetical
order):

Cepstrum: The inverse Fourier transform of the logarithm of a Fourier transformed
signal. Cepstrum makes periodic events more pronounced. Usage: Gearbox noise analysis

Impulsiveness: This metric attempts to transform the non-linear response humans have to
fast and large changes in pressure level to a linear metric. Usage: Gunshot analysis

Kurtosis: A measurement of how quickly the signal changes. Usage: Health monitoring
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Prominence ratio: the ratio of a tone level to noise. This metric is similar to the other
tonal psychoacoustic metrics Tonality and Tone-To-Noise. Usage: Automotive turbo
whine

Roughness: This metric seeks to quantify the psychoacoustic response to signal
modulation for signal modulations up to 70Hz. This is very similar to the low frequency
modulation psychoacoustic metric Fluctuation Strength (modulations <4Hz). Usage:
Electric razor sound quality

Total harmonic distortion (THD): This is the ratio of energy in the fundamental compared
to the summation of the energy in all of the harmonics. Usage: 60Hz electrical power
quality

Total harmonic distortion + noise (THDN): Similar to THD, this metric is the ratio of the
energy in the fundamental to the energy in the entire signal. Usage: Amplifier
performance quantification

Sharpness: This metric tries to account for high frequencies being more annoying to
humans than low frequencies. It can be thought of as a high frequency weighting
function. Usage: Vacuum cleaner sound quality

Speech intelligibility index (SII): The percent of speech that is intelligible given a
specific background signal and speaker signal. SII (1997 ANSI S3.5) is an improvement
on the 1969 ANSI S3.5 Articulation Index (AI) metric [78]. Usage: Determine how
difficult it would be to understand the passenger in your vehicle for difference vehicle
conditions

Speech transmission index (STI): The percent of speech that is intelligible given a
specific speech signal and a perturbed speech signal [79]-[81]. Usage: telecom industry
to understand the effects of transmission across their service.

While use of these metrics in their specific usage application is obvious, they can even be
used in combination with other metrics. This is common when attempting to correlate to
jury study results. There are many examples from architectural acoustics [82]-[86], the
automotive industry [87]-[93], and beyond [94]-[99]. The basic idea is to perform a
regression analysis on the metrics (i.e. the independent variables) to see how they
correlate to jury study results (i.e. the dependent variables). When performing subjective
to objective comparisons historically, coefficient of determinations (R?) have been found
to be as high as 0.5-0.8 in Vardaxid et al.’s literature review of building sound quality
[100], 0.5 in Gozalo et al.’s sound scape comparison [98], 0.92 for Moravec et al.’s
washing machine comparison [99], and 0.92 for Astolfi et al.’s work in secondary
education classrooms [82].

There are many different types of regression analyses that can be done. Typical
regression analysis is done when the dependent variable is not categorical (e.g. is can be
any value). Logistic regression is used when the dependent variable is categorical (e.g.
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Yes/No). Additionally under the regression category is linear and non-linear methods.
Both of these methods have many different models that have subtle assumption
differences (e.g. the intercept is forced to 0). The standard regression is single linear
regression (aka linear regression),

y=mx+b EQ5-1

where y is the dependent variable, x is the independent variable, m is the weighting factor
applied to x and b is the intercept. If there were multiple metrics multiple linear
regression could use used,

Yy =myxy + myx, + myx, +--+b EQ5-2

where y is the dependent variable, X, is the nth metric, m, is the nth weighting factor, and
b in the intercept. Multiple regression can also be done with non-linear models as well as
logistic regression analysis.

When performing regression analysis it is important that the dependent variables not be
colinear [87]. Collinearity is a way to express high correlation (R? > 0.7) among
dependent variables of a model. Ideally there is low correlation among the dependent
variables and high correlation between the dependent variables and the independent
variables of a model. Collinearity or multicollinearity can result in variations of any
individual metrics causing variation in other metrics. The general process flow to develop
the non-colinear metric set to include in the regression model is overviewed in Figure
5-1.

In concert with performing regression on common metrics, it is also possible for
researchers to develop custom metrics for the specific stimulus they are studying [91]. In
this study, the stimulus or audio files listened to by the subject were transient speech.
This is a very important caveat because basically all of the psychoacoustic metrics
mentioned above are designed for stationary or at least semi stationary data where the
level is not changing drastically over, for example, the Fourier Transform (FFT) block.
This presents a unique challenge when processing the common metrics appropriately.

A typical way to adapt common psychoacoustic metrics to transient signals is to compute
a max or average value of the metrics vs time. For example, a loudness vs time array
could be computed for a transient signal. Then the maximum and/or average of that array
could be taken. Then that max/average single value would be the metric used in the
regression.
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Collect Independent
Variables

Construct Correlation
Matrix

Factor Analysis/Principle
Component Analysis

Determine Number Of
Factors

Interpret Factors

Select Independent
Variables for model

Perform Regression

Figure 5-1: Flowchart of how to decide what independent variables to use in a regression model
[87].

One illustrative example of why transient signals are difficult is THD. It uses the
frequency domain values to calculate the ratio of the energy in the fundamental to the
sum of the energy in the harmonics, but the metric has no specified frequency resolution
(i.e. acquisition time). With a 2 second audio clip, like in this jury study, the frequency
resolution could be as low as 0.5Hz (1/2s), but that would take an average of the energy
over the whole phrase “The word is X,” which really is not expressing the THD level of
what is just in the word the subject was to understand, “X.” To help solve this problem,
the signal could be processed in sections (i.e. FFT blocks) computing a max/average
value of the THD vs time array as a custom metric.

For THD specifically, the power industry has developed a custom transient THD metric
that utilizes small FFT blocks and overlap [101]-[103]. In development of this transient
THD metric the power industry had the helpful advantages of A) knowing where to
roughly look for the fundamental (i.e. 60Hz) and B) having very little noise outside of the
fundamental and its harmonics. These advantages make it easier to determine the
processing parameters and develop a robust algorithm.

As another example of the traditional approach to custom psychoacoustic metric
generation, Huang et al. used the Wigner—Ville Transform to generate a metric for shock
absorber sound quality [90].
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In addition to the more traditional approach of custom metric generation as mentioned
above, this work also tried to look at modern speech recognition machine learning
algorithms to see if their results could be used as an independent variable. While
complete explanation of how the algorithms work is outside of the scope of this effort,
the general idea is to compute a cepstrum result every 10ms and input that data into a
trained a Hidden Markov Model (HMM) [104], [105]. The output of the model is post-
processed to give the estimated spoken word as well as confidence estimate.

Overall, the goal of this effort was to develop a set a psychoacoustic metrics and weights
that have the best correlation to the jury study intelligibility results from Chapter 4. Then
if a new signal processing method is discovered, its intelligibility can be estimated
without having to conduct a completely new jury study. In this effort the common
psychoacoustic metrics are used where appropriate, a custom psychoacoustic metric is
developed, and a modern speech recognition algorithm is examined.

5.3 Methodology

5.3.1 Dependent variable selection

The MRT section of the jury study from Chapter 4 included 270 questions. 45 questions
for each of the 6 processing methods (i.e. AM/DC/PAM/SED/TradUP/CntUP). The
TradUP results were not included in this analysis as the main goal was to correlate to
CNT results. Therefore, 225 incorrect or correct selection data points were generated
from 38 valid jury subjects. The author did not include the 9 subjects that were thrown
out from the paired comparison juror quality investigation outlined in Chapter 4. The
primary dependent variable this effort tracked to was “Percent Correct” being the percent
that the 38 jurors answered correctly when listening to a file.

For example, the first file (of 225) listened to was “SED _F4 b01 wS5.wav.” This means
the processing method was SED, the speaker was female 4 (out of the 4 female and 5
male options), b0l means MRT word list 1 (of 50), and the word spoken was 5 (of 6).
Therefore, when the subject listened to the first file they heard this wav file while looking
at all six words in list 1. The subject then selected the word they thought they heard. They
could have either got it correct or not correct. Therefore, there was correct or not correct
(1 or 0) data for all 38 subjects for all 225 files. From this “Percent Correct” was
computed for each of the 225 files. This was the primary dependent variable for the
regression.

5.3.2 Signal processing
In order to generate psychoacoustic metric statistics, calibrated audio files were needed.
These files were recorded from a Larson Davis AEC206 headphone test fixture. The

same tablet and headphone combination used in the jury study were placed in the
anechoic chamber with the headphones on the headphone test fixture. All 225 files were
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played through the tablet and headphones then recorded with a calibrated National
Instruments 9234 24bit ADC module. This generated the calibrated files that were used
when processing metrics.

Some of the speech intelligibility metrics in this study required a “clean” and “noisy”
signal that were time synced. The data recorded from the headphone test fixture (i.e. the
noisy signal) had to be time synced back to original clean data. Below is an illustration of
how that was done for file F1 _b01 w3.wav representing the first female speaker
speaking word 3 from word list 1.

1) F1 b0l w3.wav was processed with methods AM/DC/PAM/SED/CntUP to
generate AM_F1 b0l w3.wav, DC F1 b0l w2.wav, etc...

2) The generated files were played through the amplifier into the CNT speaker and
the response were recorded with an artificial head (aka Aachen head) at a Im
distance (0.5m for PAM) in the anechoic chamber

3) Those files were uploaded to the tablet and used in the jury study

4) After the study, the tablet and headphones were placed in the anechoic chamber
and all 225 signals were played into the headphones while the output was
recorded with the headphone test fixture.

5) Using cross-correlation and manual visual alignment, the noisy signals were time
synced to the clean signal. Additionally, they were down-sampled to the same
sample rate (i.e. 51.2kHz—>48kHz) and truncated to the exact same length.

The standard files were the “phrase” files. Meaning they contained the phrase “the word
is X.” During evaluation of the metrics, it was also decided to try and process just the
single word spoken (i.e. just “X”), because the dependent variable Percent Correct was
only focused on how well the subject understood the word and the phrase “the word is..”
that came before it would likely just cause the metric to compute incorrectly. This was
especially concerning when taking a maximum or average value of the metric versus time
array. In order to generate the truncated files with just the single word X, Audacity was
used to manually select the start and stop signal indices on the clean signals. The noisy
signals were then processed with cross-correlation and manual adjustment to get
truncated noisy files that were time-synced to the truncated clean file.

5.3.3 Metric development

5.3.3.1 Common Psychoacoustic metrics

As mentioned in the introduction, there are a variety of options for psychoacoustic
metrics to include. The metrics selected and processing parameters for this effort are
provided in
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Table 5-1. Loudness and sound pressure level were chosen because they are the standard
broad metrics. Total Harmonic Distortion (THD), THD plus Noise (THDN), and Signal-
to-Noise (S/N) were chosen because the different carbon nanotube (CNT) signal
processing methods all have to do with harmonic distortion. The blocksize was kept small
(1024) relative to the 48kHz sampling rate to help reduce the transient effects. It is not
clear how Head Acoustics Artemis software determines the fundamental frequency. The
author assumes it takes the bin with the highest value from the FFT results, which with
the lack of other information makes sense, but is not correct for this case. Regardless, it
was still included. Sharpness was included because the CNT is more efficient at higher
frequencies so a metric that looks just at higher frequency content seemed logical.
Cepstrum was included even though the author did not feel it would provide much value.
There was no technical reason this specific data could not be processed with Cepstrum so
the metric was included. Similarly, Kurtosis was also included. Power Spectral Density
(PSD) was included as a different time weighting than the Sound Pressure Level (SPL).
PSD and SPL would likely give back similar results for a stationary signal, but it was
unclear what would happen given the transient input so it was included.

Articulation-Band Correlation Modified Rhyme Test (ABCMRT), Speech intelligibility
Index (SII), Speech Transmission Index (STI) and, Short Term Objective Intelligibility
(STOI) seemed like the most promising metrics as they all look at intelligibility
specifically so they were included. ABCMRT is an objective speech estimator that
follows the MRT development logic. SII is used to determine intelligibility estimates for
speech levels in noisy environments (i.e. measurements taken synchronously). STI is
used to determine intelligibility estimates for perturbation mechanisms like phone calls
(i.e. measurements taken asynchronously). STOI is used to determine speech
intelligibility for degraded signals in cochlear implant simulations.
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Table 5-1: Included standard subjective (i.e. psychoacoustic) metrics included in this analysis

Metric [units] Processing settings Software

Loudness [Sones] DIN 45631 Head
Sound field: Free Acoustics
Single values: Max/Average Artemis
Averaged left and right ear

Harmonic Distortion [%] | 1024 blocksize Head
Overlap 50% Acoustics
THD/THDN/SN Artemis
Single values: Max/Average
Averaged left and right ear

Sharpness [acum] Method: Aures Head
Loudness - DIN 45631 Acoustics
Sound field: Free Artemis
Single values: Max/Average
Averaged left and right ear

Cepstrum [dB] 1024 Blocksize Head
Window: Hanning Acoustics
Overlap: 50% Artemis
Single values: Max/Average
Averaged left and right ear

Kurtosis [none] Overlap: 50% Head
Integration time: 125ms Acoustics
Single values: Max/Average Artemis
Averaged left and right ear

Sound pressure level Time weighting: Fast (125ms) Head

(SPL) [dB re 2e-5 Pa] Spectral weighting: Z Acoustics
Single values: Average Artemis
Averaged left and right ear

Sound pressure level Time weighting: Fast (125ms) Head

(SPL) [dBA re 2e-5 Pa] Spectral weighting: A Acoustics
L5/L10/L25 (= statistics p95/p10/p75, Artemis
respectively)
Single values: Average
Averaged left and right ear

59

www.manaraa.com



Power spectral density 1024 Blocksize Head
(PSD) [dBA re 2e-5Pa] Window: Hanning Acoustics
Overlap: 50% Artemis
Spectral weighting: Z
Single values: Average/Peak hold
Averaged left and right ear
Articulation-Band Used standard settings to map to all 21 MATLAB
Correlation Modified critical bands
Rhyme Test (ABCMRT) | Input both the original “clean” file and the
[%] [106] “noisy” file the subjects listened to in the
study
Used left ear data only
Speech Intelligibility ANSI S3.5 MATLAB
Index (SII) [%] Background signal was a 40dBA overall
level pink noise
Single values: Max/Average
Input both the original “clean” file and the
“noisy” file the subjects listened to in the
study
Used left ear data only
Speech Transmission Delta frequency: 2 Hz for phrase files and | Python
Index (STI) [%] [79]- 8Hz for single word files due to their short
[81] time duration. Default = 0.06Hz
Input both the original “clean” file and the
“noisy” file the subjects listened to in the
study
Used left ear data only
Short Term Objective Input both the original “clean” file and the | Python
Intelligibility (STOI) [%] | “noisy” file the subjects listened to in the
[107], [108] study
Used left ear data only

5.3.3.2 THDSI

Based on the common psychoacoustic metric investigation and the understanding that the
different CNT drive signal processing methods are designed to cope with the frequency
doubling issue, it became unfortunately obvious that the THD/THDN metrics would
likely not work well. There were two main issues:
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1) With the Artemis software, there was no way to enter a fundamental frequency or
somehow teach the software where to look. This meant that it would likely not
compute THD correctly. The signal to noise (S/N) metric would still be correct,
but ideally THD could be calculated.

2) THD has to be computed in the frequency domain. This means that some block of
time has to be averaged. In Artemis a blocksize as low as 256 can be selected
(~5ms at 48kHz) so this would likely help, but would create large frequency
resolution in the frequency domain encompassing the energy from the
neighboring spectral lines.

To solve issue #1, it was proposed that the ideal metric could be fed both the clean and
noisy signals, like ABCMRT, SII, STI, and STOI require and the algorithm could learn
the correct fundamental frequency from the clean signal. For example, using short time
Fourier transforms the time synced clean and noisy signals would be input and processed
with the same blocksize. The algorithm would determine which bin in the clean signal
had the highest level and call that the fundamental bin. It would then use that bin index
and its harmonics on the noisy signal to compute THD.

To solve issue #2, three common time-frequency analyses were investigated. Short time
Fourier transforms (STFTs), Morlet wavelets, and Wigner-Ville transforms were studied
for an example file. The wavelet processing had worse frequency resolution at low
frequency versus the STFTs which was a huge issue because most of the fundamental
frequencies were low (<200Hz) where the wavelet frequency resolution was the highest.
While the short time resolution at high frequencies was a bonus for wavelets, the very
high frequency resolution at low frequencies meant that wavelets would not work. The
Wigner-Ville transform was a concern for three reasons 1) the frequency domain artifacts
from the harmonics 1)) the significant computation time with 2s of data at a sampling
rate of 48kHz and iii) The signals included multiple “events” especially in the phrase “the
word is X” signals. Even the single word “X” signals still had multiple events in them for
words like “pu-ck”. The author understands that different windowing methods could have
been used to reduce the artifacts, but STFT appeared to work sufficiently so a more in
depth Wigner-Ville investigation seemed unnecessary. Therefore, it was decided STFT
was the best path forward with the main concern being that frequency resolution
increased with decreased time between STFT blocks, but a variety of blocksizes could be
computed quickly to determine an optimal blocksize setting.

In summary, the Total Harmonic Distortion for Speech Intelligibility (THDSI) metric
requires inputs of time synced, same duration, clean and noisy signals. The signals are
then STFT processed. In each spectra, the fundamental frequency bin index is determined
from the highest value in the clean spectra. The fundamental level is set to the noisy
signal value at that fundamental bin index. Then the harmonics are summed from integer
multiples of the fundamental index in the noisy signal. THDSI is then computed as the
energy in the harmonics divided by the energy in the fundamental. THDNSI can also be
computed as the energy in all frequency bins except the fundamental divided by the
energy in the fundamental.
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To illustrate THDSI with an example, imagine there are two signals, an original and
modified signal. The original is 5 seconds long, but has a 50Hz sine wave at an amplitude
of 10 for the time period 1-5s. Then there is a modified signal which is the original signal
after going through some perturbation. It has an amplitude of 0 for the first second. For
time 1-2 seconds it has a S0Hz sine wave at amplitude 10 just like the original. For time
2-3 it has two sine waves, one at 5S0Hz 10 amplitude, but a second at 100Hz and 2.5
amplitude. For time 3-4 the first harmonic increases from 2.5 to 5. Then for the last
second, time 4-5, the fundamental goes to 0 and the 100Hz sine wave at amplitude 5 still
exists (Table 5-2). The spectrogram of the modified signal is shown in Figure 5-2.

If the common THD metric was calculated over the whole 0-5s period, the result would
be 25%. Artemis would improve on this assuming a small enough blocksize was used.
Where the need for a different metric is more obvious is in the last second, time 4-5s.
Here the original signal has energy at the fundamental, but it was, for some reason,
reduced to 0 in the modified signal. The Artemis algorithm would falsely call 100Hz the
new fundamental and compute a THD of 0%, because there is no energy at 200Hz, when
it actually should be infinite. Figure 5-3 shows the result from the THDSI computation
for the modified signal.

Table 5-2: Example signals for THDSI

Time Original | Modified Signal Common Artemis | THDSI*
Period Signal THD THD*
(Seconds) (Fundamental/Harmonic) | computed

over 0-5s*
0-1 0 0/0 25% 0% 0%
1-2 10 10/0 25% 0% 0%
2-3 10 10/2.5 25% 25% 25%
3-4 10 10/5 25% 50% 50%
4-5 10 0/5 25% 0%** Inf

*Values computed on the modified signal
**Artemis computes 0% even though it should be infinite, because in the original signal
there was energy at the fundamental.
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Figure 5-2: STFT analysis of the example modified signal.
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Figure 5-3: The THDSI result from the simulated modified signal.

Initially there are two obvious parameters for THDSI, the STFT blocksize and amount of
overlap. The author also added three more parameters: down sample factor, A-weight,
and a required threshold above the noise to detect a valid fundamental frequency. The
down sample factor was incorporated to help increase algorithm performance since the
data were acquired at 48kHz and the frequencies of interest were in the primary human
speech range of less than 10kHz. The A-weight parameter was important so that higher
frequency harmonics would not increase the THD unnecessarily as the subjects would
not have perceived them. The threshold parameter requirement becomes obvious when
there is silence in the file. For example, imagine a signal where the speaker says “the
word is dent.” At the time between the words there is just noise in the signal so selecting
the fundamental from the clean signal as the max bin value would just be selecting the
bin with the highest noise. Therefore, a level and frequency threshold for the fundamental
bin selection were added. The threshold level criteria,

|noisySignal(max value index)| > threshold * average(|noisySignall) EQ5-3
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where the noisySignal(max value index) is the value of the noisy signal at the index
where the STFT spectra is maximum in the clean signal and average(noisySignal) is the
average of all noisy signal STFT spectra values. The threshold frequency criteria required
the fundamental to be at 20Hz or greater. If either the threshold level or frequency criteria
were not met, then the algorithm would output a Not A Number (i.e. NaN) for THDSI
and THDNSI for that spectral line.

With the above listed parameters the THDSI algorithm worked as expected with
simulated signals, but had to be altered after investigation with CNT specific signals. Due
to CNT’s frequency response being logarithmic with respect to frequency (Figure 4-2),
the low frequency values, where the fundamentals were in the clean signal, were
significantly lower in output value and resulted in the THDSI calculation outputting very
high levels (~10,000%). To help correct for this, the noisy signal was multiplied by the
frequency response function (FRF) of the CNT loudspeaker. Figure 5-4 shows an
example spectra where the STFT original result (blue) was modified to the corrected
result (orange) to increase the lower frequencies values. This helped reduce THDSI levels
that would be unrealistically high due to dividing by a very low fundamental level. It is
important to note, as was done in Chapter 4, that the FRF for the CNT loudspeaker was
not a true FRF since a true FRF cannot be computed, because the input power is at half
the frequency of the output pressure. The FRF used here is more accurately called the
linear autopower for a constant voltage input.

STFT Noisy at 3.93 seconds

| Il"h‘ —— STFT
1001/ l‘ UL Correct STFT
TR "y —— CNT Pseudo FRF
v 50 1
©
o
et |
= 0
<
—50 1
oo
~1001 , | , 7
2000 4000 6000 8000

Frequency [Hz]

Figure 5-4: Example STFT spectra showing how the noisy signal was modified by the pseudo
FRF of the CNT loudspeaker.

An example THDIS processing is shown in Figure 5-5. Figure 5-5 a shows the detected
fundamental frequencies in the clean audio file versus time. Note: the drop outs in the
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data are when the threshold criteria were not met and the THDSI algorithm output NaN.
Figure 5-5 b and ¢ show the THDSI and THDNSI results noting that the values are very
high relative to the traditional THD metric at upwards of 3000% and 4000%-+ for THDSI
and THDNSI, respectively. These levels were significantly worse prior to adjusting the
noisy signal by the CNT FRF. The main reason these percentages are so elevated relative
to the traditional THD metric is that the CNT output at the fundamental frequency
(~100Hz in this example) is very low. Therefore, when computing THDSI the
denominator is small. With that said, the main use of this metric will be to make relative
comparisons of files, so the absolute high levels are assumed to be tolerable. From these
data, the max and average over the whole time period can be computed as the single
metrics to use in the regression. Note: Only the left ear data were processed with THDSI.
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Figure 5-5: Example THDSI output for file AM_F1 b25 w3.wav (The word is fizz). a) shows the
detected fundamental frequency in the clean signal (F1_b25 w3.wav) b) shows the computed
THDSI result ¢) shows the computed THDNSI result and d) shows the spectrogram of the noisy
signal.
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5.3.3.3 Logistic Regression models of jurors

As mentioned in the introduction, linear regression is used when the dependent variable is
not categorical (i.e. it can be any number). Logistic regression is used when the
dependent variable is categorical (e.g. True/False, 5 point scale, etc..). With the percent
correct main dependent variable requiring linear regression, the expected data flow after
metric computation is shown in Figure 5-6.

Subjective Metric 1

Dependent Variables
Subjective Metric 2

R? and weights Linear Regression

Independent Variables

Subjective Metric N

Figure 5-6: General data flow where each “psychoacoustic metric” is a common psychoacoustic
metric or a custom metric like THDSI.

Another custom metric idea the author had was to use 80% of the subject results (i.e. the
training data) to develop separate logistic regression models for each juror. Then use the
remaining 20% (i.e. the test data) to determine the performance of the models and
compute a “Predicted Percent Correct” metric. The general idea is laid out in Figure 5-7.
The predicted percent correct metric would be another independent variable going into
the final regression (Figure 5-6).

The parameters used for the logistic regression were the “liblinear” solver, an inverse of
regulation strength of 10,000,000, and the intercept was forced to zero. These parameters
were chosen by trial and error.

DV: 1/0 Training Data Subject 1

Logistic Regression IV: Subjective Metrics for

Model 1 Training Data

Predict 1/0 for Test Data
DV: 1/0 Training Data Subject 2

. Logistic Regression
YT ——— Predict 1/0 for Test Data Model 2

Predicted Percent
Correct on Test Data

1V: Subjective Metrics for
Training Data

Logistic Regression

Predict 1/0 for Test Data Model 38

DV: 1/0 Training Data Subject 38

IV: Subjective Metrics for
Training Data

Figure 5-7: General flow of data to create the predicted percent correct metric that would then be
fed in as one of the independent variables in Figure 5-6. DV and IV represent the Dependent
Variables and the Independent Variables used in the logistic regression models.

67

www.manharaa.com



5.3.3.4 Google Speech Recognizer

The final idea the author had for a custom metric was to use the output of a modern
speech recognition machine learning algorithm as an independent variable. The 225
complete phrase files were down sampled to the recommended 16kHz sample rate and
converted to linear 16 WAV format. They were then uploaded to the speech recognition
algorithm. In this case it was Google’s “command and search” model in March of 2021.
The output was the predicted phrase spoken and a confidence percent. The predicted
word in the phrase was then matched to the actual word spoken to determine a percent
correct metric that would be used as an independent variable in the final regression.

5.3.4 Linear regression

Following the methodology shown in Figure 5-1, the first step before performing the
regression is to remove the highly correlated independent variables (i.e. psychoacoustic
metrics) using the correlation matrix, factor analysis (FA), and principle component
analysis (PCA). In summary, the difference between FA and PCA is that FA forms a
model of theoretical latent “factors” that predict the independent variables and PCA
reduces the independent variables to a smaller set of orthogonal “components”. Putting
that another way, PCA assumes no other information exists that could cause variation
within the independent variables while FA does not. Typically, both methods show
similar results. For this effort, both were used together and both were used with the
criteria of explaining 70% of the variation when determining the number of factors and
components from FA and PCA, respectively.

Once the correlation matrix was computed, the absolute value was plotted in a colormap
(Figure 5-8). From there, a new colormap was generated with a threshold level of 0.5
where values less than 0.5 where set to 0 and values greater than 0.5 were set to 1 (Figure
5-9). From this colormap, the list of which variables needed to be reduced was decided.
Putting it another way, if there was a white cell in Figure 5-9 then a decision had to be
made on which metric to not include in the regression analysis.

In order to help determine which correlated metric should be kept for the model, the FA
factors and the PCA components were examined and the metric with the highest factor
loading or component weighting was used. For example, in Figure 5-9 it is shown that
Max THD, Avg THD, Max THDN, Avg THDN, Max S/N, Avg S/N, and Avg H2 were
all correlated. This makes intuitive sense because they are all trying to represent the
amount of harmonic distortion and noise. Looking at the FA loadings from these metrics
in Table 5-3 factor “1” and Table 5-4 component “0,” Avg THDN had the highest
loadings/weighting at 0.94 and 0.21, respectively. If there was not a tie in the FA
loadings, like this case, the metric with the highest value in the FA loadings was kept and
the other correlated metrics were removed from the metric set. If there was a tie for the
highest loading then the author would use the highest component weighting to determine
which metric to keep. If there was a tie in both the FA loadings and PCA components the
author would randomly select one of those two as the metric to keep and all others would
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be removed. Completing this exercise on all of the metrics would result in a correlation
matrix as shown in Figure 5-10, where the remaining metric set is uncorrelated and can
be used in regression.
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Figure 5-8: An example correlation matrix for the phrase files (I.e. the word is X) against the
common metrics.
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Figure 5-9: An example showing how the threshold of 0.5 was applied to the correlation matrix in
Figure 5-8. Any cells where there is white means that metric was correlated with another metric
and a decision had to be made about which metric to not include moving forward. Note: The
colormap is symmetric and could be plotted as an upper or lower triangular matrix.
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Table 5-3: Example factor analysis loadings table for the phrase files against the common
metrics. The blue box is highlighting the cell referenced in the text example. Note: All values less
than 0.4 were set to 0 to make the table more readable.

0 1 2 3 4

Max Loudness [sones] 0.00 0.00 0.00 0.00 0.00
Avg Loudness [sones] 064 000 0.54 0.00 0.00
Max THD [dB] 0.00 0.82 0.00 0.00 0.00

Avg THD [dB] 0.00 093 0.00 0.00 0.00

Max THDN [dB]

Avg THDN [dB]

Max S/N [dB]

Avg S/N [dB] 0.00 093 0.00 0.00 0.00

Max H2 [dB] 0.00 0.00 0.00 0.00 0.00

Avg H2 [dB] 0.00 0.83 0.00 0.00 0.00

Max Sharpness [acum] 000 000 0.00 063 0.00

0.00 0.00
0.00 0.00

0.00 0.00

Avg Sharpness [acum] 0.67 0.00 000 0.00 0.00
Max Cepstrum [dB] 0.00 0.00 0.88 0.00 0.00
Avg Cepstrum [dB] 0.00 0.00 0.90 0.00 0.00

Avg Kurtosis [none] 0.00 0.00 0.00 0.00 0.00
Avg SPL [dB] 0.00 0.00 0.00 0.00 0.00

Avg SPL [dBA] 0.97 0.00 0.00 0.00 0.00

Avg L5 [dBA] 0.83 0.00 0.00 0.00 0.00

Avg L10 [dBA] 0.20 0.00 0.00 0.00 0.00

Avg L25 [dBA] 0.77 0.00 0.00 0.00 0.00

Avg PSD [dBA] 0.97 0.00 0.00 0.00 0.00
PeakHold PSD [dBA] 0.59 0.00 0.00 0.00 0.00
ABCMRT [%] 0.00 0.00 0.00 0.00 0.60
maxSll [%] 0.00 0.00 0.00 0.00 0.00

avgSil [%] 0.00 0.00 0.00 046 0.00
avgSTOI[%] 0.00 0.00 0.00 0.00 0.69
avgSTI[%] 0.00 000 0.00 0.00 0.00

0O O O O O O O O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O o o o o o o oo
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Table 5-4: An example showing the output from PCA using the same inputs as the FA in Table
5-3. The blue box is highlighting the cell referenced in the text example. Note: PCA only needed
5 components (columns) to represent 70% of the total variation whereas FA needed 6 factors.

0 1 2 3 4

Max Loudness [sones] 0.00 0.00 0.01 0.00 0.08
Avg Loudness [sones] 0.00 0.07 000 0.00 0.00
Max THD [dB] 0.12 0.00 0.00 0.00 0.05

Avg THD [dB] 0.21 0.00 0.00 0.00 0.08

Max THDN [dB] 013 0.00 0.00 0.00 0.08

Avg THDN [dB 0.00 0.00 0.00 0.05

Max S/N [dB] 015 000 0.00 0.00 0.7

Avg S/N [dB] 0.21 0.00 0.00 0.00 0.04

Max H2 [dB] 0.5 0.00 0.00 0.00 0.00

Avg H2 [dB] 0.20 0.00 0.00 0.00 0.00

Max Sharpness [acum] 0.09 0.32 0.00 050 0.24
Avg Sharpness [acum] 0.00 0.00 000 0.34 0.00
Max Cepstrum [dB] 0.00 0.32 0.00 0.00 0.05
Avg Cepstrum [dB] 0.00 0.36 0.00 000 017
Avg Kurtosis [none] 0.00 0.00 002 0.00 0.00
Avg SPL [dB] 0.00 0.02 0.00 0.00 0.07

Avg SPL [dBA] 0.00 0.00 0.00 0.04 0.00

Avg L5 [dBA] 0.00 0.00 0.00 0.05 0.04

Avg L10 [dBA] 0.00 0.00 0.00 0.04 0.06

Avg L25 [dBA] 0.00 0.00 0.00 0.00 0.00

Avg PSD [dBA] 0.00 0.00 0.00 0.04 0.00
PeakHold PSD [dBA] 0.00 0.00 000 015 0.21
ABCMRT [%] 0.00 0.09 0.00 0.02 014

maxSll [%] 0.00 0.09 0.00 0.00 0.00

avgSll [%] 0.00 0.21 000 0.22 0.00

avgSTOI [%] 0.00 014 0.00 0.09 0.02
avgSTI[%] 0.00 0.00 000 0.00 0.00
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Figure 5-10: An example correlation matrix after the correlated metrics were removed using FA
and PCA.
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In this effort both single and multiple linear regression were used. Single ordinary least
squares linear regression was used initially to understand how each individual metric
correlated to the dependent variable prior to FA/PCA analysis. While performing
multiple linear regression, 14 different variations of linear regression models were tested

(
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Table 5-5). The standard ordinary least squares (OLS) regression resulted in the highest
correlation so was therefore used to determine the optimal set of metrics. Nonlinear
regression was investigated, but found to perform worse than linear so it was not used.

To determine the optimal set of metrics from all of the non-colinear independent
variables, all possible permutations of the metric set were regressed against the percent
correct dependent variable and the metric set that had the lowest adjusted R? was
selected. Adjusted R? is defined as,

(1-R)H(n—-1)
. n—k-1 EQ5-4

adjR? = 1

where R? (%) is the coefficient of determination, n is the number of points in the data,
and K is the number of independent variables. Adjusted R?> was used because all
permutations were compared from k = 2 to k = total number of non-collinear independent
variables.
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Table 5-5: Linear models used in the study

Regression Model Name

Comments

Ordinary Least Squares Minimize residual sum of squares

Ridge Regression With built in leave one out cross
validation

SGD Regressor Minimize a regularized empirical loss
with stochastic gradient descent

Elastic Net Model Iterative fitting along a regularization
path

Lars Least angle regression

Lasso Linear model with L1 prior as regularizer

Lasso-Lars Lasso model fit with lars

Orthogonal Matching Pursuit

Bayesian ARD Regression

Bayesian Ridge Regression

RANSAC Regression

Random sample consensus

Theil-Sen Regressor

Robust multivariate regression model

Passive Aggressive Regressor

Epsilon-Support Vector Regression

With free parameters C and epsilon

Partial Least Squares

Transformer and regressor

As a quality check step Variation inflation factor (VIF) analysis was performed to
confirm no multicollinearity existed for the metrics entering regression. VIF is,

VIF =

1— R? EQ5-5

where R? is the coefficient of determination between the single metric in question and all

other metrics in the analysis. An example is shown in Table 5-6. VIF values were
required to be below 3, but typically were below 2. Putting the 3 requirement another
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way, the R? between each independent variable and all other independent variables going
into regression had to be less than 2/3 (~0.66).

Table 5-6: An example VIF analysis output.

Max Loudness [sones] Avg S/N [dB] Max H2 [dB] Max Sharpness [acum] Avg Cepstrum [dB] Avg Kurtosis [none]

1.67 1.29 116 173 1.49 118

Avg SPL [dBA] ABCMRT [%] maxSIl [%] avgSll [%] avgSTOI[%] avgSTI[%]

1.50 1.36 1.09 1.24 1.64 m

Once the optimal metric set was regressed, the T-Statistic p-value was computed. If the p-
value was less than a = 0.05 that meant the independent variable was worth keeping (i.e.
that null hypothesis that the independent variable does not correlate to the dependent
variable could be rejected). The metric set was then further refined to only include
metrics that had a small p-value. That metric set became the final model.

Using the final metric set, the coefficient of determination R? and the adjusted R?
(EQ5-4) were computed as the final fit of the independent variables to the dependent. The
weights for each metric were also computed. The weights could be applied in EQ5-2
when testing future drive signal processing methods.

5.4 Results

5.4.1 Logistic regression

The analysis described in section 5.3.3.3 unfortunately resulted in a low coefficient of
determination, R? = 0.023 (Figure 5-11). Additionally, the result seemed to predict many
values of ~84 percent correct (i.e. the vertical line of dots in Figure 5-11). The cause of
this was unknown. Therefore, the predicted percent correct metric was not used as an
independent variable moving forward.
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Best result R2 = 0.0228
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Figure 5-11: Scatter plot showing the lack of correlation for the computed independent variable
“Predicted Percent Correct” to the dependent variable Percent Correct.

5.4.2 Google speech recognizer
The analysis described in 5.3.3.4 was initially conducted on the clean original phrase

files. With these files, the algorithm correctly guessed the word 80% of the time. An
example of the output is shown in Table 5-7.
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Table 5-7: Example output from the Google speech recognition model using the clean phrase

files.
filename transcript conf
SED_F4_b01.w5  please select the word tent  0.948085
PAM_M5_b24 w3 please select the word tap 0.948657
PAM_F4 b22 w1 please select the word shop 0.950698
SED_M5_b33 w5  please select the word Pub  0.869195
UP_F2_b41 w1 please select the word Ray 0.987629
SED_F3_b06 w6  please select the word jest 0.954970
UP_M3_b26 w5 please select the word team 0.899944
SED_F4_b13 w5 please select the word seem 0.934092
PAM_M1_b36_w6 please select the word rip 0.926346
DC_M3_b19 w2 please select the word big 0.979454

The same analysis was then performed on phrase and single word files. An example
output is shown in Table 5-8. There were only 13 of the 225 files that even resulted in a
predicted transcript for the phrase files. Of those 13 only two had the phrase “Please
select the..”, but unfortunately neither of those two were correct resulting in a 0% correct
score. Since the model input is 10ms cepstrum values, it is hypothesized that the noise in
the signals would drastically effect the performance. Recall from Chapter 4, that the DC
offset method (45 of 225 files) had a 97.2% correct score. So while the noise did not
affect the jury subjects, it was too much for the speech recognition algorithm at this time.
Therefore it was not used as an independent variable in the regression.
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Table 5-8: The complete output from the Google speech recognition model using the noisy

phrase files.

filename transcript conf

0 DC.M5 b02 w4 play sore throat 0.704590

1 DC_M1_b09 w3 plants 0.322731

2 DC_M5_b50 w2 please select the word Sean 0.612255

3 UP.M1_b22 w3 last night 0.655150

4 UP_M3_b45 w6 direct now 0.570902

5 DC_M5_b09 w1 director 0.244051

6 UP_M3_b08 w2 flashlight 0.609077

7 AM_M5_b06 w4 please select the right breast 0.435492

8 DC.M3.b14 w3 plans for after work.  0.818231

9 UP_M5_b18 w5 text back the rent. 0.799142

10 SED_M1_b08 w1 Wok Wok. 0.378371
11  UP_M3_b28 w1 flashlight 0.546319
12 DC_M5_b10_ w3 pizza restaurant at 10 0.651433
13 AM_M3_b12 w3 Optimus Prime  0.786093

5.4.3 Multiple linear regression

Initially the phrase files (i.e. the word is “X”’) were processed. The analysis was done
including THDSI metrics and not including them (Table 5-9). From the complete
original metric set, the common metrics were reduced to 12. The results are shown in the
left half of Table 5-9. The R? and adjR? using all 12 of these metrics was 0.16 and 0.11,
respectively. As described in section 5.3.4, all permutations of the 12 metrics were tested
to determine the metric set (i.e. model) with the highest adjR?. This resulted in an R? and
adjR? of 0.15 and 0.13, respectively for a model including max loudness, average
cepstrum, average kurtosis, average SII, and STOI. A t-test was computed for all of these
independent variables and the resulting p-value was used to determine if the metric
should be kept (i.e. if there was significant correlation between the metric and the
dependent variable). This analysis showed that average cepstrum and average kurtosis
had to be removed. A new model was fit using max loudness, average SII, and average
STOI. The p-values were again computed and average SII was now 0.07 which was up
from 0.03 in the initial model. Therefore, average SII was removed and the metric set for
the final model was determined to be max loudness and average STOI. The resulting R?
was 0.12, the weights were -0.96 and 62.65 for max loudness and STOI, respectively.
The intercept was 92.92.

The same process was repeated including using the THDSI metrics and is shown on the
right half of Table 5-9. The resulting model did not contain THDSI, but contained
average STOI and average SII.
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Table 5-9: Results from processing the phrase files

Phrase - "The word is X"

Common Metrics Only Common Metrics + THDSI
Number of Noncolinear 12 Number of Noncolinear 14
RA2 0.160 RA2 0.175
adjR"2 0.113 adjR"2 0.120
Model with highest AdjR"2 Model with highest AdjR"2
RA2 0.150 RA2 0.167
adjR"2 0.131 adjR"2 0.140
Metric Coefficient |VIF P-val Metric Coefficient VIF P-Val
0[Max Loudness [sones] -0.82 1.17 0.02 0[Max Loudness [son| -0.68 1.54 0.10
1|Avg Cepstrum [dB] -211.56 1.26 0.18 1|Max Sharpness [ac 2.96 1.63 0.25
2|Avg Kurtosis [none] 0.41 1.05 0.19 2|Avg Cepstrum [dB] -194.75 1.46 0.25
3|avgSIl [%]* 136.24 1.14 0.03 3| Avg Kurtosis [none 0.45 1.05 0.14
4|avgSTOI [%] 62.79 1.21 0.00| 4|avgSIl [%] 131.2 1.17 0.04]
5|Intercept 10.69|NaN 0.82 5|avgSTOI [%] 61.06 1.23 0.00|
Model with just p-vals < 0.05 6|minTHDNSI [%] 0 1.11 0.07
rh2 0.121 7|Intercept -17.53|NaN 0.73
adjR"2 0.113 Model with just p-vals < 0.05
Metric Coefficient |P-Val rn2 0.107
0[Max Loudness [sones] -0.96 0.01 adjR"2 0.099
1|avgSTOI [%] 62.65 0.00 Metric Coefficient P-Val
2|Intercept 92.92 0.00 0[avgSll [%] 129.41 0.04
1|avgSTOI [%] 64.34 0.00
2|Intercept -47.04 0.24

*Not included even thought p-val<0.03 because it would have a p-val = 0.072 when regressed with only Max Loudness and avgSTOI

The process was then computed for the single word files with the thought being that the
jury study subject was only tasked with understanding the word “X” so any metric data
computed for the beginning of the phrase “the word is...” would likely not correlate. For
example, when max loudness was computed the loudness versus time array may have had
a peak at a time not when the word was said. Therefore, all of the metrics were computed
over the very short duration single word clips. The results are shown in Table 5-10.

The common metrics, not including THDSI metrics, resulted in a final model containing
max SII and average STOI with an R? = 0.082. Including THDSI the resulting model had
only average THDNSI as a metric with an R? = 0.122. The compiled adjusted R? values
for all of the final models is shown in Table 5-11. The conclusion from this is that the
best model to predict percent correct is the single word model which contains the single
psychoacoustic metric average THDNSI.
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Table 5-10: Results from processing the single word files.

Single Word- "X"

Common Metrics Only Common Metrics + THDSI
Number of Noncolinear 9 Number of Noncolinear 11
R"2 0.107 RA2 0.179
adjR"2 0.695 adjR"2 0.136
Model with highest AdjR”2 Model with highest AdjR"2
RA2 0.100 RA2 0.177
adjR"2 0.080 adjR"2 0.155
Metric Coefficient |VIF P-val Metric Coefficient VIF P-val
0[Avg L5 [dBA] -0.37 1.14 0.28] 0|Max H2 [dB] 0.61 1.02 0.25
1|maxSll [%] 455.04 1.05 0.047, 1[maxSll [%] 355.30 1.03 0.10
2|avgSll [%] 56.09 1.13 0.10| 2|avgSTOI [%] 23.41 1.14 0.01
3|avgSTOI [%] 36.56 1.05 0.00) 3|avgSTI [%] -19.50 1.03 0.09
4|avgSTI [%] -13.41 1.02 0.26) 4[minTHDSI [%] 0.02 1.21 0.09
5|Intercept -355.66[NaN 0.09 5|avgTHDNSI [%) -4.02E-04 1.33 0.00
Model with just p-vals < 0.05 6|Intercept -228.10|NaN 0.25
rh2 0.082 Model with just p-vals < 0.05
adjR"2 0.073 "2 0.122
Metric Coefficient |P-Val adjR"2 0.118
0|maxSll [%] 545.57 0.03 Metric Coefficient P-Val
1|avgSTOI [%] 33.87 0.02 0]|avgTHDNSI [%] -4.09E-04 0.00
2|Intercept -437.01 0.00 1|Intercept 95.85 0.00

Table 5-11: Comparison between the different file lengths showing the best performing model
was the single word model that included average THDNSI.

Phrase AdjR"2 |Single Word AdjR"2
No THDSI 0.113|{No THDSI 0.073
THDSI 0.099|THDSI 0.118

The resulting best fit model equation is

Estimated Percent Correct = —0.000409 * avgTHDNSI + 95.85

EQ 5-6

where the Estimated Percent Correct is the model’s prediction of the percent correct and
avgTHDNSI is the computed average THDNSI (%) over the duration of only the single
word (i.e. not the whole phrase). The resulting fit from this model is shown in Figure

5-12.

While the final coefficient of determination is low, there are many aspects of the final
model that make intuitive sense. For example, the slope of the model line (Figure 5-12) is
negative. This means that as THDNSI increases, the estimated percent correct decreases,
which follows intuition. Additionally, the y intercept is 95.85 which is close to 100%. It
follows intuition that the model would have a y intercept of near 100% meaning that
when the model is input 0% THDNSI the estimated percent correct should be near 100%.
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Comparison of model to actual results
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Figure 5-12: Demonstration of the final model fit over the jury study data.

5.5 Conclusions

In conclusion, a correlation between the subjective results of the jury study in Chapter 4
and a variety of psychoacoustic metrics was undertaken. The psychoacoustic metrics
included common sound quality metrics like loudness, but also included a new custom
metric titled Total Harmonic Distortion for Speech Intelligibility THDSI. Additionally,
unique novel metrics like developing logistic regression models for each jury study
subject and using modern speech recognition algorithms were investigated.
Unfortunately, all of this effort only led to a model with a coefficient of determination
(R?) of 0.122. With jury studies it can be difficult to get correlation and that was
definitely the case in this effort. Moving forward, alternative machine learning algorithms
could be utilized to help provide additional independent variables to investigate.
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6 Conclusions and recommended future work

6.1 Conclusions

In order to determine if a new technology is applicable for any given application it
requires certain knowledge about that technology. For example, one can’t determine if
the hammer will work for nailing without knowing if the hammer is too heavy to lift.
Whenever a new technology is discovered a myriad of questions arise about it. The
development for CNT loudspeakers is no different.

A lot has changed in the community’s understanding of carbon nanotube loudspeakers
since the start of this effort in fall of 2014. In addition to the results presented in this
document, significant improvements have been made by others in the durability [71],
modeling [12], [40]-[47], and application spaces for these transducers [30]-[36]. The
main contributions of this document were quantification of the true efficiency for various
signal processing methods, discovery of new signal processing methods that can be used
with class D amplifiers, and subjective data outlining which signal processing methods
are the most intelligible.

Combing the results from Chapters 2 & 3, a summary of the efficiency and THD findings
are presented in Table 6-1. From this data the main conclusion that can be made is that
regardless of drive signal processing method, the efficiency is on the same order of
magnitude (i.e. no drive signal method significantly increases the efficiency). This
efficiency follows the analytic prediction for an open CNT thermophone (Figure 2-5)
Putting it another way, for an open CNT loudspeaker, the efficiency will always be on the
E-6% efficiency order of magnitude (frequencies < 300Hz). This is drastically different
than the ~E-2% efficiency of a moving coil loudspeaker (Table 2-3), which is roughly
four orders of magnitude more efficient.

While these transducers are, by their physical nature, less efficient that does not mean
their efficiency cannot be improved. For example, tuning the resonance of a CNT
loudspeaker in an enclosure would cause that system to have a higher output than an open
CNT loudspeaker therefore improving the efficiency.

It is also interesting to note from Table 6-1 that the THD of the FCAC (aka SED) method
is significantly lower than the other methods, but as mentioned in Chapter 3 this is largely
due to that method, as well as TCAC, being able to be optimized for single sine wave
signals and not working well on complex signals. With that knowledge it was not
surprising to then see SED be one of the worst performers in the jury study in Chapter 4.
Aside from CntUP, DC offset had the highest THDs in Chapter 3, but performed the best
in the jury study in Chapter 4. This suggests that THD is not a great metric to track sound
quality for CNT drive signals for stationary signals. For the transient signals in Chapter 5,
a similar conclusion was made that THD was not the ideal psychoacoustic metric which
led to the development of THDSI as a better, but still not perfect, metric.
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One important conclusion from the efficiency work is that there are multiple different
drive signal processing methods that work to linearize the thermoacoustic frequency
doubling. Each of these methods allow for use with different amplification hardware.
CntUP/SED/TCAC can all be used with class D amplifiers. AM can be used with some
class D amplifiers as well as radio frequency amplifiers, and DC can be used with class
A/B amplifiers.

One surprising conclusion from the efficiency effort was that efficiency was not a
function of carrier frequency (Figure 2-10). This was largely surprising because
according to the analytical model [13] efficiency should increase with frequency.
Therefore, if a higher carrier frequency is used the higher the efficiency was expected to
be. This did not turn out to be the case. Other important conclusions were that the optimal
B/A ratio for DC offset was 0.62 (Figure 2-7) and the optimal modulation index for AM
was 1.5 (Figure 2-11).

Table 6-1: Summary of efficiency and THD results from Chapters 2 & 3. All data was for input
ower of ~72 Wi

Efficiency (u%) THD (%)
AC/CntUP 43-319 ~ 00
%C/ﬁgé]gg) 1.69 - 308 43-93
AMAC/AM 1.24 - 228 22 -95
FCAC/SED 1.01 - 1083 0.68 - 59
TCAC 1.26 - 388 1.7-11

Summarizing the results from the jury study in Chapter 4, DC offset was the most
intelligible drive signal processing method followed by amplitude modulation (AM)
(Table 4-2). Additionally, it was found that executing a jury study outside the lab by way
of a drive up jury study can lead to statistically significant results without the health risk
of bringing tens of subjects into the lab during a pandemic.

Recalling the findings from the psychoacoustic metric correlation in Chapter 5, the main
conclusion reached was that there are not any combination or common psychoacoustic
metrics that correlated well to the jury study results in Chapter 4. A new metric, Total
Harmonic Distortion for Speech Intelligibility (THDSI) was developed, but only resulted
in a coefficient of determination (R?) equal to 0.12. That model is shown in EQ 5-6.
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6.2 Future work

6.2.1 Efficiency

Looking back at what has been done in regards to efficiency, there are two main areas to
focus on moving forward. The first is a new method that was published by Torraca et al.
[109]. The new method, adaptive predistortion (AP), uses a sliding FIFO buffer of
historical data to compute a dynamic DC offset. It then adds that DC offset to the signal
and modulates the summation at the nyquist. This allows for a drive signal processing
method that can be used on a class D amplifier. In subjective testing in the lab, the sound
quality was vastly superior to TCAC and FCAC (aka SED). Interestingly, the authors
claim this method to also be significantly more efficient than other methods. However,
they only use SPL measurements to confirm this and they also don’t acquire data at
frequencies up to the nyquist (i.e. where the modulation occurs). So this method should
be investigated as the others were done in Chapters 2 & 3.

The second area to focus on is enclosure design. Different application opportunities are
pushing this development, but at this time it is just that, application specific. A much
broader study of enclosure efficiency should be undertaken so that the applications can
start their designs based on what is learn from the optimal enclosure effort.

6.2.2 Drive signal processing

At this point, especially with the addition of AP as described in 6.2.1, there is not a
significant need for drive signal development. Gains in the efficiency and durability
arenas warrant more attention.

6.2.3 Sound quality

The intelligibility results of the jury study in Chapter 4 were a big step forward in
discerning which drive signal processing method was most intelligible. Unfortunately, the
resulting psychoacoustic metric correlation in Chapter 5 did not leave much promise that
any future metrics, like AP, could be compared without executing a new jury study.
Therefore, it is suggested that additional machine learning algorithms be tested to
determine if a new model (i.e. independent variable) can be found that better correlates to
the jury study results.

The main difficulty with developing modern machine learning algorithms is determining
what data to feed it. Preliminary investigations show Convolutional Neural Network
(CNN) models seem to perform the best for audio file correlation. Unfortunately it is not
as easy as inputting the wav files into the models. While that can be done, the results are
not as correlated as when meta data are used [110]. Audio recognition models (e.g.
models that estimate genre) seem to be typically fed short time Fourier transform (aka
spectrogram) data with varying construction of the various layers within the CNN. It is
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recommended to look into these methods, possibly feeding the model other metrics like
THDSI and the others that showed some correlation in Chapter 5.

6.3 Recommendation applications

After spending nearly six and a half years with the CNT technology, I believe it is
unlikely that CNT loudspeakers will become more popular than traditional moving coil
loudspeakers primarily due to their inefficiency. The ideal application for CNT
loudspeakers are applications that require low weight, small size, or custom directivity
and have access to ample power.
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8.1. User acknowledges that CCC may, from time to time, make changes or additions to the Service or to these
terms and conditions, and CCC reserves the right to send notice to the User by electronic mail or
otherwise for the purposes of notifying User of such changes or additions; provided that any such changes
or additions shall not apply to permissions already secured and paid for.

8.2. Use of User-related information collected through the Service is governed by CCC's privacy policy,
available online here:https://marketplace.copyright.com/rs-ui-web/mp/privacy-policy

8.3. The licensing transaction described in the Order Confirmation is personal to User. Therefore, User may
not assign or transfer to any other person (whether a natural person or an organization of any kind) the
license created by the Order Confirmation and these terms and conditions or any rights granted
hereunder; provided, however, that User may assign such license in its entirety on written notice to CCC in
the event of a transfer of all or substantially all of User's rights in the new material which includes the
Work(s) licensed under this Service.

8.4. No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The
Rightsholder and CCC hereby object to any terms contained in any writing prepared by the User or its
principals, employees, agents or affiliates and purporting to govern or otherwise relate to the licensing
transaction described in the Order Confirmation, which terms are in any way inconsistent with any terms
set forth in the Order Confirmation and/or in these terms and conditions or CCC's standard operating
procedures, whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a separate
instrument.

8.5. The licensing transaction described in the Order Confirmation document shall be governed by and
construed under the law of the State of New York, USA, without regard to the principles thereof of conflicts
of law. Any case, controversy, suit, action, or proceeding arising out of, in connection with, or related to
such licensing transaction shall be brought, at CCC's sole discretion, in any federal or state court located in
the County of New York, State of New York, USA, or in any federal or state court whose geographical
jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. The parties
expressly submit to the personal jurisdiction and venue of each such federal or state court.If you have any
comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-
8400 or send an e-mail to support@copyright.com.

v1.1
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A3 THDSI Python 3.7 Function

import numpy as np

def THDSI (cleanFFT, NoisyFFT, yAxis, binsize, threshold = 2,
overlapFac=0,fs = None, TF = None):

Calculates the Total Harmonic Distortion for Speech
Intelligibility (THDSI) value at every time step of the Short Time
Fourier Transform (STFT) spectra

* cleanFFT : 2darray
Where the each row is the STFT spectra at a center time
(i.e. the typical np.fft.rfft() result that is amplitude corrected)
for the clean signal.
* NoisyFFT : 2darray
-Where the each row is the STFT spectra at a center time
(i.e. the typical np.fft.rfft() result that is amplitude corrected)
for the noisy signal.
-Must be the same shape as cleanFFT and computed from the
same STFT settings (e.g. binsize)

* yAxis : l1lDarray

Array of the center bin frequencies resulting from the
cleanSTFT and noisySTFT computations

* binsize : int

The binsize used in the STFT calculations for cleanSTFT and
noisy STFT

* Threshold : float

(Optional) The amplitude threshold used to determine if a
valid fundamental frequency is found. Default = 2

* OverlapFac : float

(Optional) Value 0 - 1 representing the percent of overlap
desired Example: 0.5 means 50% overlap. Default = 0
* fs : int

(Optional) Sampling rate of the original data used to make
cleanSTFT and noisySTFT. Including fs will result in metrics being
printed about the processing parameters. Default = None
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* TF : 1Darray

(Optional): Transfer Function applied to the noisySTFT data.
Must have length equal to the row size of noisySTFT. Default = None

* THDSIvals : ldarray

Contains the computed THDSI values at each time step.
Returns NaN if no valid frequency is found or if no harmonics are
found.

* THDNSIvals : ldarray

Contains the computed THDNSI values at each time step.
Returns NaN if no valid frequency is found or if no harmonics are
found.

* harmonicVals : ldarray

Contains the computed summation of all harmoincs at each
time step. Returns NaN if no valid frequency is found or if no
harmonics are found.

* fundFreqgs : ldarray

Contains the estimated fundamental frequency determined from
the cleanSTFT spectra. Returns NaN if no valid frequency is found or
if no harmonics are found.

#Check input data quality
assert (np.shape(cleanFFT) == np.shape (NoisyFFT)),"Clean and
Noisy signals are not the exact same length"

#Initialize variables
THDSIvals = []
THDNSIvals = []
harmonicvVals = []
fundFreqgs = []

#Print some metrics if given fs

if fs:
print ("Freq res: {:.2f} [Hz]".format (fs/binsize))
print ("FFT Frame size: {:.0f} [ms]".format (binsize/fs*1000))
if overlapFac != 0:
print ("Increment between FFTs is {} [ms] - {}%
overlap".format ((binsize/fs*1000) *overlapFac,overlapFac*100))
else:
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print ("Increment between FFTs is {} [ms] - {}%
overlap".format ((binsize/fs*1000),overlapFac*100))

ACF = 1/np.mean (np.hanning(binsize)) #1/mean

ECF = 1/np.sgrt(np.mean (np.hanning (binsize) **2)) #1/rms

for currCol, (cleanFFTData, noisyFFTData) in
enumerate (zip (cleanFFT.T, NoisyFFT.T)):

maxIdx = cleanFFTData.argmax ()

if np.any (TF) :
#Compute corrected STFT from CNT transfer function and
apply it to the noisyData before THDSI calc
noisyFFTData = noisyFFTData/TF

fund = noisyFFTData[maxIdx]
if (fund > (threshold*np.mean (noisyFFTData))) &
(yAxis[maxIdx]>20): #Threshold check
harmIdx = maxIdx
harmonics = 0
harmonicMultiplier = 2
while (maxIdx * harmonicMultiplier) < len(noisyFFTData) :
#Loop through harmonics
harmIdx = maxIdx * harmonicMultiplier
harmonics += noisyFFTData[harmIdx]
harmonicMultiplier += 1
if (harmIdx != maxIdx): #Harmonics founds, data is good
fundFregs.append (yAxis [maxIdx])
harmonicVals.append (harmonics)
THDSIvals.append (harmonics/fund*100)
THDNSIvals.append(((np.sum(noisyFFTData) -
fund) /fund) * (ECF/ACF) *100) #Remember to convert from ACF to ECF when
summing to an energy value
else: #No harmoincs found so data no good. Write NaN
fundFreqgs.append (np.nan)
harmonicVals.append (np.nan)
THDSIvals.append (np.nan)
THDNSIvals.append (np.nan)
else: #Threshold not met, write NaN
fundFreqgs.append (np.nan)
harmonicVals.append (np.nan)
THDSIvals.append (np.nan)
THDNSIvals.append (np.nan)

return THDSIvals, THDNSIvals, harmonicVals, fundFreqgs
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