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Abstract 
Traditional speakers make sound by attaching a coil to a cone and moving that coil back 
and forth in a magnetic field (aka moving coil loudspeakers). The physics behind how to 
generate sound via this velocity boundary condition has largely been unchanged for over 
a hundred years. Interestingly, around the time moving coil loudspeakers were first 
investigated the idea of using heat to generate sound was also known. These 
thermoacoustic speakers heat and cool a thin material at acoustic frequencies to generate 
the pressure wave (i.e. they use a thermal boundary condition). Unfortunately, when the 
thermoacoustic principle was initially discovered there was no material with the right 
properties to heat and cool fast enough. Carbon nanotube (CNT) loudspeakers first 
generated sound early in the 21st century. At that time there were many questions 
unanswered about their place in the sound generation toolbox of an engineer.  

The main goal of this dissertation was to continue the development of the CNT 
loudspeaker with focus on practical usage for an acoustic engineer. Prior to 2014, when 
this effort began, most of the published development work was from material scientists 
with objective acoustic performance data presented that was not useful beyond the scope 
of that particular publication. For example, low sound pressure levels in the nearfield at 
low power inputs was a common metric. Therefore, this effort had three main objectives 
with emphasis placed on acquiring data at levels and in nomenclature that would be 
useful to acoustic engineers so they could bring the technology to market, if adequate. 

i) Investigation into the true power efficiency of CNT loudspeakers  
ii) Investigation into alternative methods to linearize the pressure response of 

CNT loudspeakers 
iii) Investigation into the sound quality of CNT loudspeakers 

Overall, it was found that CNT loudspeakers are approximately four orders of magnitude 
less power efficient than traditional moving coil loudspeakers. The non-linear pressure 
output of the CNT loudspeakers can be linearized with a variety of drive signal 
processing methods, but the selection of which method to use depends on a variety of 
factors (e.g. amplification architecture available). In general, all methods studied are on 
the same order of magnitude power efficiency, but the direct current offset and amplitude 
modulation drive signal processing methods are superior in terms of sound quality.  
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1 Introduction 

1.1 Motivation of research 

The use of heat to generate sound (i.e. the thermoacoustic effect) was first discovered by 
Braun 1898 [1] and was later elaborated on by Arnold 1917 [2] to described the perfect 
material required to use this effect. Unfortunately, at that time the closest available 
material was 700nm thick platinum and its frequency response was below the human 
audible range. This lack of sufficient material caused thermoacoustic loudspeaker 
development to fall behind that of the modern moving coil loudspeaker. In 2006, Yu et. al 
used the relatively new material, carbon nanotubes, to generate acoustic waves up to 
3kHz [3]. This demonstration set in motion the need for further development of these 
thermoacoustic transducers to understand their place in the market. From 2006 to the 
early 2010s most of the development was being done by material scientists. While their 
work was important for the development of the underlying structure, their results were 
not acoustic engineer compatible. The results often showed objective performance data in 
the near field at low power levels where the sound pressure level (SPL) would likely be 
in the background moving more than a few meters away. This drove the need for 
development of these devices from the acoustics perspective. If these transducers were 
going to be commercially viable there were certain topics that needed more investigation. 

Looking back to fall of 2014, it was obvious that the next objective metric needed was 
true power efficiency. Barnard et. al were able to generate 111 dBA at 1m at 2kHz, but 
that required 6kWpk of input power [4]. This was an important step in acknowledging the 
output pressure capability, but it also emphasized the potential efficiency concerns. 
Additionally, the data, as with all other publications at that time, was SPL output for a 
given electrical power input. That is not a watts-to-watts energy comparison. A 
comparison of electrical input power to acoustic power (i.e. a true power efficiency) was 
needed. The true power efficiency data was needed for any future modeling effort. 
Additionally, at that time there was limited effort put into dealing with the nonlinear 
pressure output of the CNT loudspeaker (i.e. the frequency doubling issue). Therefore, 
efficiency and linearization were prioritized at the beginning of this dissertation.  

As the efficiency and linearization effort was concluded, there were many other aspects 
of the technology that needed to be addressed (e.g. durability). After considering the 
dissertation’s scope and what the rest of the research group was studying, it made sense 
to focus the final portion of this dissertation on the subjective quality of the CNT 
loudspeaker. There has never been mention of their sound quality in any published paper, 
but to anyone who has ever heard them in person it is obvious that they are inferior to 
traditional moving coil loud speakers. To better understand the reason for the difference 
required a subjective evaluation.  

The purpose of this introduction is to set the stage for why efficiency, linearization, and 
sound quality were selected as the topics to focus on. At the beginning of each of the 
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following chapters there will be a detailed introduction for that topic. This introduction is 
simply an introduction to the dissertation. 

1.2 Objectives 

The main objective of this dissertation was to characterize CNT loudspeakers with a 
focus on generating information (e.g. data and knowledge) that would be applicable to 
the acoustics community. The end result being information that the community could use 
to determine if CNT loudspeakers could be brought to market for their specific 
application. The specific information that this effort planned to discover was power 
efficiency data, knowledge about sound pressure linearization methods that do not require 
expensive amplification, and sound quality data. 

1.3 Explanation of chapters 

Chapter 2 is a reproduction of a Journal of the Acoustic Society of America publication 
titled Experimental quantification of the true efficiency of carbon nanotube thin-film 
thermophones [5]. This publication is the initial work of quantifying the true power 
efficiency of the CNT loudspeaker. Prior to this publication only sound pressure at 
known distances was published and most of those distances were in the near field. This 
led to data that could not be generalized. In order to model performance of a CNT 
loudspeaker, the true electrical energy input to output sound power is needed. The 
directivity was not measured, but can be assumed to be a monopole for low frequencies. 
The power efficiency data along with total harmonic distortion (THD) was presented for 
drive signal processing methods amplitude modulation (AM), direct current offset (DC), 
and unprocessed (CntUP). Data for a traditional moving coil loudspeaker was also 
presented (TradUP). 

Chapter 3 is a reproduction of a SAE Technical Paper titled Continued Drive Signal 
Development for the Carbon Nanotube Thermoacoustic Loudspeaker Using Techniques 
Derived from the Hearing Aid Industry [6]. This publication expanded the work of 
Chapter 2 to include two additional linearization methods obtained from the hearing aid 
industry. A frequency domain method called spectral envelope decimation (SED/FCAC) 
and a time domain method called dynamic linear frequency compression (TCAC) were 
demonstrated and their power efficiency and THD were quantified. The importance of 
the expansion to these methods was that they do not require a class AB amplifier like DC 
nor do they require a high frequency amplifier like AM. These methods can be used with 
an inexpensive class D amplifier. 

Chapter 4 is currently under review at the Journal of the Audio Engineering Society. This 
paper is titled Subjective evaluation of carbon nanotube loudspeaker drive signal 
processing methods using single word techniques. This effort used single word spoken 
text to evaluate the drive signal processing methods in order to determine which drive 
signal processing method is more intelligible on a relative scale and if CNT loudspeakers 
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are intelligible on an absolute scale. The study performed a drive-up jury study 
comparing the drive signal processing methods AM, CNT loudspeaker unprocessed 
(CntUP), DC, Pulse amplitude modulation (PAM), SED, and TradUP. This work will be 
the first published subjective performance data for CNT loudspeakers. 

Chapter 5 takes the results from the Chapter 4 jury study and compares it to traditional 
psychoacoustic metrics. The goal was a “golden metric” that could be used in place of a 
full jury study to predict CNT subjective performance. It takes a significant amount of 
effort to conduct a jury study. Therefore, having an idea of which psychoacoustic 
metric(s) approximate subjective performance can help save development time.  

Chapter 6 summarizes the results of the complete effort and attempts to pull out primary 
themes and connections between the chapters. Additionally, recommended next steps are 
outlined. 
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2 Experimental quantification of the true efficiency of 
carbon nanotube thin-film thermophones 

2.1 Abstract  

Carbon Nanotube thermophones can create acoustic waves from 1 Hz to 100 kHz. The 
thermoacoustic effect that allows for this non-vibrating sound source is naturally 
inefficient. Prior efforts have not explored their true efficiency (i.e. the ratio of the total 
acoustic power to the electrical input power). All previous works have used the ratio of 
sound pressure to input electrical power. A method for true power efficiency 
measurement is shown using a fully anechoic technique. True efficiency data are 
presented for three different drive signal processing techniques: standard alternating 
current (AC), direct current added to AC (DCAC), and amplitude modulation of an AC 
signal (AMAC). These signal processing techniques are needed to limit the frequency 
doubling non-linear effects inherent to carbon nanotube thermophones. Each type of 
processing affects the true efficiency differently. Using a 72 Wrms input signal, the 
measured efficiency ranges were 4.3 E-6 – 319 E-6, 1.7 E-6 – 308 E-6, and 1.2 E-6 – 228 
E-6 percent for AC, DCAC, and AMAC, respectively. These data were measured in the 
frequency range of 100 Hz to 10 kHz. In addition, the effects of these processing 
techniques relative to sound quality are presented in terms of total harmonic distortion.  

2.2 Introduction 

Carbon nanotube (CNT) thermophones create sound with heat, as opposed to a traditional 
moving coil loudspeaker, which uses a magnet to push and pull a metal coil of wire 
attached to a cone. This velocity boundary condition of a traditional speaker’s cone 
creates the pressure wave that propagates to the listener’s ear. In contrast, CNT 
thermophones use a thin-film that can oscillate its surface temperature at acoustic 
frequencies, creating a varying temperature boundary condition. With every heating cycle 
the air near the thin-film expands. When the current is removed from the thin-film, it 
cools, contracting the surrounding air. The repeated expansion and contraction of the 
adjacent air due to the thermal boundary condition creates the pressure wave that 
propagates to the listener’s ear.  This type of thermoacoustic device is called a 
thermophone. 

The thermoacoustic effect was first published in 1898 by Braun, demonstrating how heat 
can create sound [1]. In the early 1900s, Arnold and Crandall explored this phenomenon 
using 700nm platinum, which could only heat and cool at frequencies less than 16 Hz, 
below the human audible range [2]. A material that could heat and cool quickly enough 
did not exist until 1991, when CNT thin-film was discovered [7]. In 2006, Yu et al. were 
the first to use the thermoacoustic effect with CNT thin-films and create sound in the 
audible range [3]. 
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Carbon nanotubes have a very low heat capacity per unit area and have been shown to 
oscillate their surface temperature at frequencies up to 100 kHz [8]. Without the heavy 
magnet of a traditional moving coil loudspeaker, CNT thermophones are useful for 
applications where a lightweight speaker is desired. In addition, rare-earth metals, 
commonly used to reduce weight of traditional moving coil loudspeakers, are 
unnecessary. This makes CNT thermophones a good choice for sustainable loudspeakers. 
Application areas may include automotive, aerospace, and defense systems, where weight 
is at a premium. CNT thermophones are also flexible and stretchable, which allows them 
to be placed over complex geometric surfaces. 

Several authors have analytically explored CNT thin-film thermophones [4], [9]–[12]. 
Xiao et al., were the first to develop a theoretical model of the CNT thermophone’s true 
efficiency, given as 

 𝜂 = !
"!"#$%

= #$&"!"#$%
%&''((

&(*'+*))&
  EQ2-1 

where 𝜂 is the efficiency, 𝛱 is the sound power (watts), Pinput is the total input power 
(watts), 𝑓 is the frequency (Hz), 𝜌- is the density of the surrounding gas (kg/m3), 𝑐 is the 
speed of sound in the surrounding gas (m/s), 𝐶" is the specific heat of the surrounding gas 
(J/kg K), 𝑇- is the ambient temperature (K) of the surrounding gas, and 𝑇. is the mean 
temperature (K) of the thin film [13]. This model assumes the acoustic wavelength is 
much larger than the size of the source (i.e. it radiates as a monopole). 

Prior to this effort, however, there has been minimal work measuring the efficiency of 
CNT thermophones [13]–[15]. Previous efficiency measurements compared the measured 
sound pressure level (SPL) at 1 meter to the total electrical input power into the CNT. 
However, in some experiments, the sound pressure level was not measured at 1 m, but 
instead measured in the nearfield and estimated at 1 m using spherical spreading. In 
addition, previous studies have focused on the low input power regime of CNT 
thermophones, on the order of 1 to 10 Wrms. True efficiency is defined as the ratio of 
acoustic output power (watts) to the input electrical power (watts). Experimentally 
measuring this true efficiency over a range of realistic input power levels is the goal of 
this study.   

CNT thermophones are non-linear transducers. The non-linearity occurs because the 
output SPL is proportional to the square of the input electrical current. This causes a 
doubling of frequency between the input and output signals [11], resulting in significant 
distortion for broadband content (e.g. speech, music, etc.). Signal processing techniques 
such as DC offset, amplitude modulation, and single-sided pulse width modulation have 
been shown to significantly reduce this distortion, but these methods require additional 
input power [4], [16]. These processing techniques are used to modify the drive signal 
going into the CNT thermophone. This work will show a test method for measuring the 
true efficiency of thermophones and explore that efficiency using alternating current 
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(AC), direct current offset with alternating current (DCAC), and amplitude modulation of 
an alternating current (AMAC).  

Because pressure is proportional to power (voltage or current squared), the AC input 
method produces a doubled output frequency. It is trivial to show this using the power 
reduction trigonometric identity. For the case of DCAC, this non-linearity results in an 
output pressure of 

 P(t) ≈ 𝐵% + 2𝐵𝐴𝑠𝑖𝑛(𝜔𝑡) + 𝐴%[/0123	(%56)
%

]     EQ2-2 

where P is the pressure (pascals) as a function of time, t (seconds), A is the peak 
amplitude of the signal (volts), B is the amount of DC offset (volts), and w is the 
frequency of the signal (rad/s). The doubled frequency is observed in the third term, the 
fundamental frequency appears in the second term, and the first term contributes to waste 
DC heating. For AMAC, the input voltage signal is   

 𝑉(𝑡) = :1 + 𝐴7𝑐𝑜𝑠(2𝜋𝐹7𝑡)? ∗ 𝐴(sin	(2𝜋𝐹(𝑡) EQ2-3 

which is squared due to the non-linearity of the system. In EQ2-3, V is the voltage (volts) 
as a function of time, t (seconds), AM is the amplitude of the modulated signal (volts), FM 
is the frequency of the modulated signal (rad/s), AC is the amplitude of the carrier signal 
(volts), and FC is the frequency of the carrier (rad/s). The resulting components when this 
input signal is squared are FM, 2FM, 2FC, 2FC-FM, 2FC+FM, 2FC+2FM, and 2FC-2FM. It is 
interesting to note the presence of the 2FM peak and second side lobes at 2FC+2FM and 
2FC-2FM, as these are not created in a linear loudspeaker’s response to AMAC input.  

The relative amplitudes of the modulated and carrier signal can also affect the response. 
This is typically described with Modulation Index, or the ratio of the modulated to carrier 
amplitude. Modulation depth is commonly used to describe modulation index as it is the 
percent representation of modulation index. For example, if a 1 Vpk 1000 Hz signal was 
modulated by a 2 Vpk 40 kHz carrier signal, the resulting signal would have a 0.5 
modulation index or a 50% modulation depth.  

Sound quality is also important for loudspeakers and can be a competing parameter with 
efficiency in thermophone design [4]. This work evaluates total harmonic distortion 
(THD) of the CNT thermophone as a function of many input parameters, such as 
frequency, the ratio of signal amplitude to amount of DC offset, the ratio of modulation 
frequency to carrier frequency, and modulation index. THD is the ratio of the sum total 
acoustical pressure of the 2-6th harmonics to the pressure of the fundamental, or 

 
𝑇𝐻𝐷 =

𝑆𝑢𝑚(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑜𝑓	2 − 6𝑡ℎ	ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠)
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑜𝑓	𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  

EQ2-4 

High THD results in an audio signal that is distorted and unintelligible. Therefore, the 
lowest possible THD as efficiency allows is desired for a high quality sound. 
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2.3 Carbon nanotube description 

The CNT thermophone used for this work was composed of multi walled nanotubes 
(MWNT) roughly 100 nm in length, grown on a silicon substrate. The CNT forests were 
grown by NanoWorld Laboratories at the University of Cincinnati using a chemical vapor 
deposition (CVD) technique [17], [18]. These CNTs were grown in a forest and dry 
drawn over two copper rods by researchers at Michigan Tech. The CNT was not wrapped 
around the copper rods to prevent destructive interference at high frequencies. 
Structurally, the thermophone had six ribbons of CNT, each overlaid with five layers of 
thin-film, as shown in Figure 2-1. The total size was 9 cm high by 4.5 cm wide.   

      
Figure 2-1: Picture of the CNT fixture used in this study (left) and a close up of the multiwalled 
CNT (right). Six ribbons, each five layers thick, were laid over two 101 copper rods. The CNT 
was not wrapped around the copper rods to prevent destructive interference at high frequencies.  

2.4 Methods 

To measure true efficiency, it was necessary to determine the acoustic power output and 
electrical power input to the CNT thermophone. ANSI S12.54 was used to measure the 
sound power level (LW), which was then converted to watts of acoustic power using a 
reference power of 1 picowatt [19]. The standard measurement was implemented in a 
fully anechoic chamber. The chamber has dimensions of 2.16 m long x 1.5 m wide x 2.16 
m high. This limited the radius of a typical hemisphere to below 1 m, so the CNT 
thermophone was placed on a rotating table, controlled by a stepper motor, and four 
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microphones were located in a 90° elevation arc at a radius of 1 meter from  the CNT 
thermophone base as shown in Figure 2-2. Rotating the source in this configuration 
allowed for a 1 m radius measurement hemisphere. Data were acquired six times for each 
test with a 60 degree azimuth spacing to measure the entire hemisphere around the 
source. To illustrate the process at a single frequency: a sine wave was played through the 
CNT thermophone, data were then acquired simultaneously for five seconds (25 
averages) at four elevation angles, the CNT thermophone was rotated 60 degrees in 
azimuth, data were again acquired, and this was repeated for six total azimuth locations. 
Once all of the locations had been recorded, a single sound power value was calculated. 
Because the input signal was a stationary sinusoid, the electrical power was found by 
measuring the time-averaged RMS input voltage and current on the leads to the CNT 
thermophone. For the AC and DCAC signal processing techniques, PCB 130A23 
microphones were used to measure sound pressure.  Signal conditioning was provided 
internally from a National Instruments PXIe-4497 data acquisition (DAQ) module. For 
AMAC and THD measurements, PCB 378C01 high frequency microphones were used 
with external signal conditioners providing gain values of 100. All tests were conducted 
in air with a temperature range of 21-29 °C and ambient pressure of 1014-1031 hPa. 
Ambient temperature and pressure were monitored throughout all testing to make the 
appropriate corrections when computing the sound power correction factor, per the 
standard. 

 
Figure 2-2: Test setup illustrating the implementation of ANSI S12.54 to measure average 
pressure around the CNT thermophone. Four elevation microphones took data at six azimuth 
locations (i.e. every 60 degrees-dashed lines) for each test.  

Per ANSI S12.54, section 8.1.1b, if the source emits an A-weighted directivity index (DI) 
exceeding 5 dB in any direction, more microphones should be localized in that area. For 
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example, the A-weighted DI in the elevation angle (i.e. between mic 4 and mic 1) is 
shown in Table 2-1. To account for this potential source of error, more microphones were 
localized in the area of high SPL for a single test. Figure 2-3 shows the standard 20 
microphone locations for the ANSI S12.54 and the modified test locations. Due to testing 
time and equipment limitations, the modified test was only completed once and an Lw 
correction factor for each frequency was computed (Table 2-1). The correction factor was 
applied to all other data which were acquired with the standard locations shown in Figure 
2-3. Because the source geometry and, therefore, its directivity were unchanged 
throughout the testing, this correction process produced repeatable results, while 
minimizing testing time.  

 
Table 2-1: Sound pressure level between microphone locations 4 and 1 for a total input power of 
72 Wrms and the correction factor applied to all sound power results to correct for the error from 
the standard microphone locations in ANSI S12.54 while testing a directional source. 

Low Frequency Region 

Frequency (Hz) 100 125 160 200 250 315 400 500 630 800 

  

SPL Difference 
(dBA re 20μPa) -5.2 -3.6 -1.4 -2.3 -1.2 3.3 -1.1 -5.4 -1.5 2.3 

Lw Correction 
(dB re 1e-12W -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.2 -0.1 -0.1 -0.2 

High Frequency Region 

Frequency (Hz) 1k 1.3k 1.6k 2k 2.5k 3.2k 4k 5k 6.3k 8k 10k 

SPL Difference 
(dBA re 20μPa) 1.3 3.8 5.2 6.6 8.5 17.1 32.4 28.1 28 26.4 29.9 

Lw Correction 
(dB re 1e-12W -0.1 -0.4 -0.4 0.3 0.3 0.4 0.7 -0.6 -0.6 -2.3 -1.8 
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Figure 2-3: An isometric view of the standard 20 microphone locations outlined in ANSI S12.54 
Annex B (left) and an isometric view showing the microphone locations used to compute the 
correction factor (right). The CNT thermophone is represented as a small square in the center of 
the hemisphere. 

To measure the input power, the same PXIe-4497 module was connected to a 111.5x 
attenuator to acquire voltage and a Fluke 80i-110s clamp-on current probe was used to 
measure current. Because CNT thermophones are not pure resistors above 10 kHz 
(Figure 2-4), measuring the crosspower spectrum of these two signals allowed for easy 
computation of the true power at all frequencies. Figure 2-4 shows an example of the 
electrical impedance of the CNT thermophone used in this study.  

 

Figure 2-4: Impedance for the CNT thermophone used in this work showing the deviation from 
pure resistance above 10 kHz. Inductance plays an important role in the 10-20 kHz range, while a 
more complicated impedance model must exist at frequencies greater than 20 kHz. White noise 
10 Hz to 100 kHz was played through the thermophone with total input power of 10 Wrms. 100 
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averages were taken and the resulting inductance was estimated at 0.3 mH for frequencies less 
than 20 kHz. 

A LabView code was written to run an automated ANSI S12.54 sound power test using a 
.wav file input. The sound power level output (Lw) and electrical input (watts) were 
stored. MATLAB was used to process the data. For the AC signal processing technique, 
data were obtained using pure sine wave inputs at one–third-octave (OTO) band center 
frequencies ranging from 100 Hz to 20 kHz. Frequency and total input power were 
varied, because these are the two most important independent variables in Xiao’s 
efficiency equation (EQ2-1) [13]. Since the sound pressure generated from CNT 
thermophones is proportional to the square of the input voltage signal, the efficiency for 
this signal processing technique was computed as the acoustic power (watts) in the 
second harmonic divided by the electrical input power in the fundamental, 

 𝐴𝐶	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 8'9:;6<'	"9=>?	.6	*@>	A>'9BC	D.?E9B<'
FG>'6?<'.G	HBI:6	"9=>?	.6	*@>	J:BC.E>BB6.G

∗ 100  EQ2-5 

For DCAC, data were acquired at the same frequencies, but with varying amplitude ratios 
of DC current (B) to alternating current (A). These parameters were varied because of 
their influence in EQ2-2. For the constant amplitude case, the AC amplitude (A) was 
unchanged and the DC amplitude (B) was varied to obtain different ratios of B/A. For the 
constant input power case, both B and A were manipulated to obtain different ratios of 
B/A, all with the same amount of total electrical input power to the CNT thermophone. 
The efficiency for DCAC was computed using 

 𝐷𝐶𝐴𝐶	𝐸𝑓𝑓.= 8'9:;6<'	"9=>?	K:6	.6	6@>	J:BC.E>B6.G
A:E	9$	FG>'6?<'.G	"9=>?	HB69	*@>	J:BC.		.BC	6@>	M(	9$$;>6

∗ 100   EQ2-6 

For AMAC, data were acquired at the same frequencies but for varying ratios of the 
carrier frequency (Fc) to modulated frequency (Fm). The efficiency for AMAC was 
computed as  

 𝐴𝑀𝐴𝐶	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 8'9:;6<'	"9=>?	K:6	.6	6@>	J:BC.E>B6.G
A:E	K$	8GG	"9=>?	HB69	*@>	(N*	*@>?E9I@9B>

∗ 100    EQ2-7 

noting that the denominator is the sum of all frequencies. Additionally, modulation depth 
was studied by looking at the effects of the ratio of the carrier signal amplitude (Ac) to the 
modulated signal amplitude (Am).  

THD was not computed for the AC signal processing technique as no acoustic waves are 
produced at the fundamental. Thus THD is theoretically infinite for this processing 
technique (i.e. the denominator is approximately zero, to within the noise floor of the data 
acquisition system, for EQ2-4. THD was calculated for the DCAC and AMAC using the 
2-6th harmonics because there is no significant contribution to the total power from the 
higher harmonics. 
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2.5 Results and discussion 

The results from the low and high input power AC case are shown in Figure 2-5. The true 
efficiency of a CNT thermophone varies from 4.3 E-6 to 319 E-6 percent between 100 Hz 
and 10 kHz for 72 Wrms total input power. This is theoretically the peak efficiency case 
for this device at this input power, because all of the acoustical power in the second 
harmonic (i.e. the doubled frequency) is directly from the electrical power in the 
fundamental frequency with no signal processing. DCAC requires DC electrical power to 
shift the signal and AMAC requires high frequency electrical power to produce the 
carrier frequency. Therefore, both of these processing techniques were expected to 
decrease the efficiency of the thermophone.  

 
Figure 2-5: AC true efficiency data for total input power of 6.3 Wrms and 72 Wrms. This is the 
ratio of acoustic power generated in the second harmonic divided by the electrical power in the 
fundamental (EQ2-5). The resulting fits of the experimental data are shown in EQ2-8 & EQ2-9. 
The experimental data is consistent with the theoretical model from Xiao for lower frequencies 
[13]. Note: the lower power 6.3 Wrms data was only taken from 250 to 20,000 Hz. 

The fit for the AC case with 6.3 Wrms input power (Figure 2-5) is 

 𝑃𝑜𝑤𝑒𝑟	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	(%) = 50E − 9 ∗ 𝑓-.OO EQ2-8 

where 𝑓 is the frequency in Hz and the R2 value is 0.76. The fit for the AC case with 72 
Wrms input power (Figure 2-5) is 

 𝑃𝑜𝑤𝑒𝑟	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	(%) = 201E − 9 ∗ 𝑓-.PQ EQ2-9 
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where 𝑓 is the frequency in Hz and the R2 value is 0.84. The values used to compute the 
Xiao efficiency, from EQ2-1, are shown in Table 2-2. 

 
Table 2-2: Values used to compute the Xiao efficiency. Convective heat transfer coefficient, 𝛽!, 
was obtained from Xiao et al. for a stack of 5 thin films as it was not obtained experimentally 
[13]. 

𝜌-	(kg/m3) 𝑐 (m/s) 𝐶" (J/(kg K)) 𝑇- (K) 𝑇. (K) 𝛽- (W/(m2 K)) 𝑆 (m2) 

1.1764 343  1.00643E3 297.15 𝑃<BI:6
2𝛽-𝑆

 
66 0.017 

The experimental data agreed well with EQ2-1 while the source radiated in a monopole-
like pattern at frequencies below 1,600 Hz. At frequencies higher than 1,600 Hz, the 
height of the source, 9 cm, is large with respect to a wavelength and the source begins to 
become directional. When comparing the two power level efficiencies in Figure 2-5 it 
was observed that increasing power increases efficiency, as expected from EQ2-1.  

A standard moving coil loudspeaker was tested as a baseline and the results are shown in 
Table 2-3. The moving coil loudspeaker was a custom-made PVC pipe speaker with an 
Axon 6s1 6-1/2" Shielded Midbass, an Audax DTW100TI25 4 Ohm 1" Dome tweeter, 
and a crossover frequency of approximately 4 kHz [20]. Efficiency for this test was 
calculated using 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 8'9:;6<'	"9=>?	K:6	.6	*@>	J:BC.E>B6.G
FG>'6?<'.G	"9=>?	HB	*@>	J:BC.E>B6.G

∗ 100
  

EQ2-10 

Table 2-3: Efficiency & THD  results for a standard moving coil loudspeaker. Efficiency was 
calculated using EQ2-10. Total input power was 0.6 Wrms. THD was calculated with Eqn. 
EQ2-4.  

Low Frequency Region 

Frequency (Hz) 100 125 160 200 250 315 400 500 630 800 

 

Efficiency (%) 0.41 0.38 0.38 0.27 0.23 0.31 0.32 0.39 0.45 0.67 

THD (%) 1.65 1.37 1.34 1.10 0.98 0.60 0.51 0.89 0.69 0.77 

High Frequency Region 

Frequency (Hz) 1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k 10k 

Efficiency (%) 0.21 0.38 0.22 0.20 0.18 0.10 0.11 0.15 0.14 0.08 0.07 

THD (%) 1.02 0.96 0.85 0.46 0.54 0.40 0.59 0.26 0.91 1.81 0.87 
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The standard speaker had an efficiency ranging from 7 E-2 to 67 E-2 percent. In 
approximate terms, the CNT thermophone was four orders of magnitude less efficient 
than the traditional moving coil loudspeaker. 

For the second signal processing technique, DCAC, Figure 2-6 and Figure 2-7 show the 
results for constant amplitude and constant input power, respectively.  

 

Figure 2-6: DCAC true efficiency data for a constant amplitude. The signal amplitude (A) was 
held constant while the amount of DC offset (B) was varied. Efficiency was computed with 
EQ2-6. Efficiency is shown to increase significantly with increased power, as expected. 
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Figure 2-7: DCAC efficiency data for a constant power. The signal amplitude (A) and amount of 
DC offset (B) were both varied to get different values of B/A while keeping the total power 
constant at 72 Wrms. Efficiency was computed using EQ2-6. Here an optimal ratio of B/A, in 
terms of maximum efficiency, is shown at a value of about 0.62.  

Figure 2-6 illustrates a diminishing return on increasing the amount of DC offset (B). 
Once the ratio of B/A reaches 0.75, the increase in efficiency for the added power is 
marginal. Based on Figure 2-7, for a constant input power, a B/A ratio of 0.62 is the most 
optimal ratio for efficiency. The efficiency for this ratio varies from 1.69 E-6 to 308 E-6 
percent between 100 Hz and 10 kHz with 72 Wrms total input power.  

Upon exploring Figure 2-6 & Figure 2-7, a more distinct comparison between the effects 
of varying B vs A was desired. To achieve this, a single 1 kHz sine wave was input into 
the thermophone for two scenarios: holding A constant while changing B and holding B 
constant while changing A. Figure 2-8 demonstrates that increasing B for a constant A 
does not increase the efficiency of the CNT thermophone. Instead, increasing A for a 
constant B is a more efficient way of increasing the true power efficiency. Ultimately, 
DCAC in application would be hindered because it requires a class A/B amplifier to 
satisfy the need for DC offset.  
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Figure 2-8: Data comparing the efficiency effects of holding the signal amplitude (A) constant 
while changing the amount of DC offset (B) vs holding B constant and changing A. The first 
value for each data point is the amount of power into the CNT thermophone and the second value 
is the sound power output in the 1 kHz band. Efficiency was computed using EQ2-6. All data 
points were obtained using a 1 kHz sine wave. 

For the AMAC technique, Figure 2-9 demonstrates the frequency domain acoustic output 
of the CNT thermophone with the frequency axis normalized by the modulation 
frequency. The modulated signal and its second harmonic are shown at values of F/Fm 
equal to 1 and 2, respectively. The carrier frequency in this example is 15 times higher 
than the modulation frequency. The carrier frequency is doubled and is seen at a 
normalized frequency of 30 with four dominant side lobes. The fundamental at F/Fm = 15 
and fourth harmonic at F/Fm = 60 are not predicted by theory, but are assumed to be 
artifacts of imperfect signal recreation. 
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Figure 2-9: An example of the acoustic response of a CNT thermophone normalized to the 
modulation frequency. In this example, the carrier frequency is 15 times larger than the 
modulation frequency.  

Figure 2-10 shows the AMAC efficiency of a CNT thermophone varies from 1.24 E-6 to 
228 E-6 percent with 72 Wrms input power. It was found that varying the carrier 
frequency had no effect on the efficiency. Practically, amplitude modulation is difficult to 
use, because it requires an amplifier with high enough frequency output to power the 
carrier frequency. The human hearing range extends to 20 kHz, meaning the AMAC 
carrier frequency should be greater than 20 kHz to be out of the range of hearing. Many 
common class D amplifiers limit their output frequency to 20 kHz, which means 
AMAC’s utility is limited in the current market. 
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Figure 2-10: AMAC efficiency data. A modulated signal (Fm) was varied with carrier frequency 
(Fc). The modulation index for all tests was 1 and had a total input power of 72 Wrms. Efficiency 
was calculated with EQ2-7 and was not affected by varying the carrier frequency (Fc). 

Figure 2-11 illustrates the effects of modulation depth. The optimal efficiency is found at 
an amplitude modulation ratio of 1.5; however, THD effects also need to be taken into 
account. 

 
Figure 2-11: Experimental data illustrating the effects of varying modulation index. 72 Wrms 
total input power was used and efficiency was calculated with EQ2-7. 
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Figures 12 & 13 compare the THD for the DCAC method. They demonstrate that 
increasing B/A decreased THD, but there was a diminishing return; the more B/A 
increased the less reduction in THD was observed. Since THD does not have a threshold 
level where content becomes intelligible, the value of B/A required for an acceptable level 
of THD will be subjective. Based on optimal efficiency and EQ2-4, a B/A level of 0.62 
produces THD in the 43-93% range. A B/A ratio of 0.62 created subjectively intelligible 
content for the author, but the THD was roughly 65 times higher than a standard moving 
coil loudspeaker (Table 2-3). It should be noted that intelligibility and high fidelity are 
not the same thing.  

 
Figure 2-12: Data comparing THD for different frequencies and ratios of B/A for different input 
power levels. A was held constant and B was increased. THD was computed with EQ2-4. 
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Figure 2-13: Data comparing THD for varying frequencies and ratios of B/A. In this case B and A 
were manipulated to get a constant power of 72 Wrms input to the CNT thermophone for each 
case. THD was computed with EQ2-4. 

Figure 2-14 demonstrates that THD for AMAC varies from 22-95%. For certain higher 
frequencies where the carrier was a harmonic of the modulated frequency, THD was 
significantly higher, but this should not cause any practical issues as long as the carrier is 
above 20 kHz. From a modulation index perspective, THD increased rapidly as 
modulation index was increased (Figure 2-15). Therefore, while the optimal modulation 
index for efficiency is 1.5, the THD increased significantly from 1 to 1.5. A modulation 
index of 1.0 is the best compromise between efficiency and THD. 
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Figure 2-14: THD data for AMAC. The lack of correlation in the high frequency region is a result 
of the carrier frequency being at a harmonic of the fundamental. Therefore, the THD was 
artificially increased by the carrier. THD was computed with EQ2-4. 

 
Figure 2-15: Data showing the effects on THD for varying modulation index. THD was computed 
with EQ2-4.  



www.manaraa.com

22 

A summary comparison of AC, DCAC, and AMAC is shown in Table 2-4. As expected, 
the AC case is the most efficient, but DCAC & AMAC efficiencies are on the same order 
of magnitude. In terms of THD, AMAC created slightly lower THD, but was the least 
efficient. 

 
Table 2-4: Summary of experimental data for AC, DCAC, and AMAC signal processing 
techniques. The total input power for all tests was 72 Wrms with frequency ranges of 100 Hz to 
10 kHz. Note that the efficiency for the AC case is the second harmonic efficiency. 

 Efficiency (µ%) THD (%) 

AC 4.3 - 319 » ¥ 

DCAC 
(B/A=0.62) 

1.69 - 308 43 - 93 

AMAC 1.24 - 228 22 - 95 

 

2.6 Conclusions 

The fundamental true efficiency of an AC signal is approximately zero due to the non-
linearity of CNT thermophones. The second harmonic efficiency of a CNT thermophone 
is 4.3 E-6 to 319 E-6 percent for 72 Wrms input. Experimentally, the efficiency is directly 
proportional to the input power, which supports the theoretical model created by Xiao et 
al. Additionally, the Xiao et al. model matched experimental efficiency data for 
frequencies below 1,600 Hz, where the sound source radiates as a monopole. For DCAC, 
the optimal efficiency ratio of DC offset to signal amplitude was found to be 0.62.  The 
fundamental true efficiency with that ratio is 1.69 E-6 to 308 E-6 percent for 72 Wrms 
input. This ratio had a THD varying from 43-93%. In terms of AMAC, the fundamental 
true efficiency is 1.24 E-6 to 228 E-6 percent. It was found that varying the carrier 
frequency had no effect on efficiency. Additionally, the optimal modulation index in 
terms of efficiency is 1.5, but when considering THD an index of 1.0 gives the best 
efficiency for the least amount of THD of 22-95%. Therefore, AMAC has better THD 
than DCAC with slightly lower efficiencies. Ultimately, DCAC and AMAC are less 
efficient than a method that would not require additional input power, but the overall 
efficiency loss is small, so these methods may prove to be sufficient. Their main 
limitation is the requirement of special amplifiers. DCAC required a class A/B amplifier 
that can apply a DC offset, and AMAC requires an amplifier that can output frequencies 
as high as the sum of the carrier and modulated frequencies. The development of a signal 
processing method that does not require any special equipment, and does not reduce 
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power efficiency would allow for easier loudspeaker market acceptance of CNT 
thermophones. 
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3 Continued drive signal development for the carbon 
nanotube thermoacoustic loudspeaker using 
techniques derived from the hearing aid industry 

3.1 Abstract 

Compared to moving coil loudspeakers, carbon nanotube (CNT) loudspeakers are 
extremely lightweight and are capable of creating sound over a broad frequency range (1 
Hz to 100 kHz). The thermoacoustic effect that allows for this non-vibrating sound 
source is naturally inefficient and nonlinear. Signal processing techniques are one option 
that may help counteract these concerns. Previous studies have evaluated a hybrid 
efficiency metric, the ratio of the sound pressure level at a single point to the input 
electrical power. True efficiency is the ratio of output acoustic power to the input 
electrical power. True efficiency data are presented for two new drive signal processing 
techniques borrowed from the hearing aid industry. Spectral envelope decimation of an 
AC Signal operates in the frequency domain (FCAC) and dynamic linear frequency 
compression of an AC signal operates in the time domain (TCAC). Each type of 
processing affects the true efficiency differently. Using a 72 Wrms input signal, the 
measured efficiencies in the frequency range from 100 Hz to 10 kHz were 1.01 – 1083 E-
6 and 1.26 – 388 E-6 percent for FCAC and TCAC, respectively. In addition, the effects 
of these processing techniques relative to sound quality were evaluated in terms of total 
harmonic distortion (THD). It was shown that although the different signal processing 
techniques affected the true efficiency, none of them increased the efficiency of the CNT 
loudspeaker to the level of current moving coil loudspeakers. Additionally, THD as the 
only sound quality metric is incomplete because these processing methods can be 
optimized for pure tones but highly distort complex signals like speech and music. 
Therefore, a sound quality metric for complex signals is needed. Overall, CNT 
loudspeakers show promise for specific applications where weight savings and complex 
geometries are required. 

3.2 Introduction 

Carbon nanotube loudspeakers create sound with heat, not vibration. Their extremely low 
heat capacity per unit area allows them to heat and cool up to 100,000 times per second 
[8]. Therefore, they have frequency response from 1-100 kHz. This phenomenon is 
synonymous with how lightning creates thunder. The energy in the lightning bolt heats 
the adjacent air, causing expansion, and therefore a pressure wave propagation. The main 
advantages of using CNT to create sound is that it is extremely light weight, flexible, and 
slightly transparent. These benefits have peaked interest for their use in automotive, 
aerospace, and defense applications.  

Braun, Arnold, and Crandall in the late 1800s to early 1900s documented that heating and 
cooling a material rapidly creates sound [1], [2]. This phenomenon is known as the 
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thermoacoustic effect. Once carbon nanotubes where discovered in the early 1990s [7], 
sound generation followed in 2006 [3], but researchers have observed that the output 
frequency of the loudspeaker is twice the input [11]. For example, if a 1 kHz sine wave is 
input into the CNT loudspeaker a 2 kHz pressure wave is output. 

CNT loudspeakers are non-linear transducers. The non-linearity occurs because the 
output SPL is proportional to the input power (i.e. voltage squared) not voltage like 
traditional loudspeakers. This causes a doubling of frequency between the input and 
output signals [11], resulting in significant distortion for broadband content (e.g. speech, 
music, etc.). Signal processing techniques such as DC offset, amplitude modulation, and 
single-sided pulse width modulation have been shown to significantly reduce this 
distortion, but these methods require additional input power [4], [14]. These processing 
techniques are used to modify the drive signal going into the CNT loudspeaker.  

The result of pressure being proportional to power is that a standard AC input signal 
produces a doubled output frequency. It is trivial to show this using the power reduction 
trigonometric identity. For the example case of using a DC offset, the input signal is 

 V(t) = 𝐵 + 𝐴𝑠𝑖𝑛(𝜔𝑡)     EQ3-1 

where V is the input voltage (volts) as a function of time, t (seconds), A is the peak 
amplitude of the signal (volts), B is the amount of DC offset (volts), and w is the 
frequency of the signal (rad/s). This non-linearity results in an output pressure 
proportional to power (i.e. V2). Squaring EQ3-1 gives 

 P(t) ≈ 𝐵% + 2𝐵𝐴𝑠𝑖𝑛(𝜔𝑡) + 𝐴%[/0123	(%56)
%

]  EQ3-2 

where P is the pressure (pascals) as a function of time, t (seconds), A is the peak 
amplitude of the signal (volts), B is the amount of DC offset (volts), and w is the 
frequency of the signal (rad/s). The doubled frequency is observed in the third term, the 
fundamental frequency appears in the second term, and the first term contributes to waste 
DC heating. From this one could conclude that having a high amount of DC offset, B, 
will solve the problem as the second term would become dominate with respect to the 
third. Unfortunately, using DC offset or amplitude modulation requires additional power 
as well as more expensive class A/B amplifiers to be able to create a DC offset or 
frequency response above 20 kHz. This additional power requirement reduces the 
efficiency. 

Several authors have analytically explored CNT thin-film loudspeakers [4], [9]–[12], 
[21], [22]. Xiao et al., were the first to develop a theoretical model of the CNT 
loudspeaker’s true efficiency, given as 
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where 𝜂 is the efficiency, 𝛱 is the sound power (watts), Pinput is the total input power 
(watts), 𝑓 is the frequency (Hz), 𝜌- is the density of the surrounding gas (kg/m3), 𝑐 is the 
speed of sound in the surrounding gas (m/s), 𝐶" is the specific heat of the surrounding gas 
(J/kg K), 𝑇- is the ambient temperature (K) of the surrounding gas, and 𝑇. is the mean 
temperature (K) of the thin film [13]. This model assumes the acoustic wavelength is 
much larger than the size of the source, i.e. it radiates as a monopole. 

Based on strong correlation between Xiao’s model and work by Bouman et al. [5], CNT 
loudspeakers have a true efficiency on the order of 10-6 percent using no drive signal 
processing, DC offset, and amplitude modulation. For comparison, a modern moving-coil 
driver is on the order of 10-2 percent efficient [5]. This is a significant difference, but the 
main conclusion from Bouman et al.’s work is that the drive signal alone cannot greatly 
increase the efficiency as the efficiency without any signal processing is still on the order 
of 10-6. While the drive signal cannot increase the efficiency, it does play a large role 
with respect to the sound quality of the loudspeaker and the required amplifier [4], [10]. 
For example, a drive signal method that does not require a DC offset or frequency 
response above 20 kHz would allow the CNT loudspeaker to be used with a class D 
amplifier making it much easier and less expensive to enter into a wider market of 
applications. 

Drawing from the hearing aid industry, different possible solutions for solving the 
frequency doubling issue without using additional power were explored. Specifically, 
dynamic linear frequency compression [23], a time domain method, and spectral envelope 
decimation [24], a frequency domain method, allow the frequency content of a signal to 
be lowered by an octave. Dynamic linear frequency compression by AVR Sonovation 
was the first commercial hearing aid with frequency lowering in 1991. It works by 
sampling a signal at the input by a factor of 2 times the sampling rate of the output and 
then discarding the additional samples over short windows (e.g., ~10 ms). Spectral 
envelope decimation was first used by Alexander in 2013. It takes a Fourier transform 
with 75% overlap, decimates the amplitude values by a factor of 2 with respect to 
frequency while not modifying the phase of each spectral component, and then inverse 
Fourier transforms to reconstruct the time domain signal.  

This work will follow the method set by Bouman et al. to measure the true efficiency of 
CNT loudspeakers [5] to explore the efficiency using spectral envelope decimation 
(FCAC) and dynamic linear frequency compression (TCAC). Additionally, sound quality 
with total harmonic distortion (THD) of the CNT loudspeaker will be studied in this 
paper. THD is defined as the ratio of the sum total acoustical pressure of the 2nd-6th 
harmonics to the pressure of the fundamental, or 
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𝑇𝐻𝐷 =

𝑆𝑢𝑚(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑜𝑓	2 − 6𝑡ℎ	ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠)
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑜𝑓	𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  

EQ3-4 

 

High THD results in an audio signal that is distorted. Therefore, the lowest possible THD 
as efficiency allows is desired for a high quality sound. 

While this work specifically explores CNT thin films for use as thermoacoustic 
loudspeakers, its application can be applied to any loudspeaker using the thermoacoustic 
effects as the pressure will always be proportional to power. Therefore, the recent work 
by Aliev et al. and Dashchewski et al. on a variety of all thermoacoustic loudspeaker 
materials can still use these methods [25], [26]. 

The automotive industry could see great benefit from this technology. These 
loudspeakers are ultra-lightweight, can conform to any geometry, have no moving parts, 
and do not depend on rare earth magnets. These features may allow CNT speakers to 
replace traditional moving coil speakers while providing significant weight savings. More 
importantly, they enable the placement of speakers in locations not previously possible, 
such as on windows or in the headliner. These transducers could also be used in cabin 
active noise control because they can be placed in optimal locations due to their small 
size and weight. They also present opportunities for active noise control in exhaust 
systems, due to their resilience in high temperature environments. Additionally, the heat 
generated from these loudspeakers could be recycled for other purposes, such as 
windshield deicing. With increased investment in research and development, 
thermoacoustic loudspeakers show significant promise for the automotive industry. 

3.3 Methodology 

The CNT loudspeakers used for this work were composed of multi-walled nanotubes 
(MWNT) roughly 100 nm in length, grown on a silicon substrate. The CNT forests were 
grown by NanoWorld Laboratories at the University of Cincinnati using a chemical vapor 
deposition (CVD) technique. These CNTs were grown in a forest and dry drawn over two 
copper rods by researchers at Michigan Technological University. The CNT was not 
wrapped around the copper rods to prevent the formation of two sources, one on each 
side of the copper rod, creating cancelling pressure waves at high frequency. In order to 
ensure a good electrical connection, the CNT was densified onto the copper rods using 
denatured alcohol. Figure 3-1 shows an example CNT loudspeaker. Structurally, each 
loudspeaker had six ribbons of CNT, each overlaid with five layers of thin-film. The total 
size was 9 cm high by 4.5 cm wide.   
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Figure 3-1: Picture of the CNT fixture (left) and a close up of the multi-walled CNT (right). Six 
ribbons, each five layers thick, were laid over two 101 copper rods. The CNT was not wrapped 
around the copper rods to prevent the formation of two sources, one on each side of the copper 
rod, creating cancelling pressure waves at high frequency. [5] 

To measure the true efficiency, it was necessary to determine the acoustic power output 
and electrical power input to the CNT loudspeaker. Following Bouman et al.’s method 
[5], ANSI S12.54 was used to measure the sound power level, which was then converted 
to watts of acoustic power using a reference power of 1 picowatt [19]. Per ANSI S12.54 
sound power is calculated as 

 𝐿= = 𝐿̂" − 10 log/-
1

2𝜋𝑟% − 10log	/-(
𝜌-𝑐
400) 

EQ 3-5 

Where 𝐿= is the sound power (dB re 20 pW), 𝐿̂"is the average sound pressure from all 
measurement locations (dB re 20 µPa), 𝑟 is the radius of the hemisphere (m),		𝜌- is the 
density of area (kg/m3), and 𝑐 is the speed of sound in air (m/s). 

The standard measurement was implemented in a fully anechoic chamber. The chamber 
has dimensions of 2.16 m long x 1.5 m wide x 2.16 m high. This limited the radius of a 
typical hemisphere to below 1 m, so the CNT loudspeaker was placed on a rotating table, 
controlled by a stepper motor, and four microphones were located in a 90° elevation arc 
at a radius of 1 meter from the CNT loudspeaker base as shown in Figure 3-2. Rotating 
the source in this configuration allowed for a 1 m radius measurement hemisphere. Data 
were acquired six times for each test with a 60 degree azimuth spacing to measure the 
entire hemisphere around the source. To illustrate the process at a single frequency: a sine 
wave was played through the CNT loudspeaker, data were then acquired simultaneously 
for five seconds (25 averages) at four elevation angles, the CNT loudspeaker was then 
rotated 60 degrees in azimuth, data were again acquired, and this was repeated for six 
total azimuth locations. Once all of the locations had been recorded, a single sound power 
value was calculated. Because the input signal was a stationary sinusoid, the electrical 
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power was computed by measuring the time-averaged root-mean-square input voltage 
and current on the leads to the CNT loudspeaker.  

PCB 130A23 microphones were used to measure sound pressure.  Signal conditioning 
was provided internally from a National Instruments PXIe-4497 data acquisition (DAQ) 
module. All tests were conducted in air with a temperature range of 21-29 °C and 
ambient pressure of 1014-1031 hPa. Ambient temperature and pressure were monitored 
throughout all testing to make the appropriate corrections when computing the sound 
power correction factor, per the standard. 

 
Figure 3-2: Test setup illustrating the implementation of ANSI S12.54 to measure average 
pressure around the CNT loudspeaker. Four elevation microphones took data at six azimuth 
locations (i.e. every 60 degrees-dashed lines) for each test. [5] 

Per ANSI S12.54, section 8.1.1b, if the source emits an A-weighted directivity index (DI) 
exceeding 5 dB in any direction, more microphones should be localized in that area. To 
account for this potential source of error, more microphones were localized in the area of 
high SPL for a single test. Figure 3-3 shows the standard 20 microphone locations for the 
ANSI S12.54 and the modified test locations. Due to testing time and equipment 
limitations, the modified test was only completed once and a sound power correction 
factor for each frequency was computed (Table 2-1). The correction factor was applied to 
all other data that were acquired with the standard locations shown in Figure 3-3. 
Because the source geometry and, therefore, its directivity were unchanged throughout 
the testing, this correction process produced repeatable results, while minimizing testing 
time.  
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Figure 3-3: An isometric view of the standard 20 microphone locations outlined in ANSI S12.54 
Annex B (left) and an isometric view showing the microphone locations used to compute the 
correction factor (right). The CNT loudspeaker is represented as a small square in the center of 
the hemisphere. [5] 

To measure the input power, the same PXIe-4497 module was connected to a 111.5x 
attenuator to acquire voltage and a Fluke 80i-110s clamp-on current probe was used to 
measure current. Because CNT loudspeakers are not pure resistors above 10 kHz [5] 
measuring the crosspower spectrum of these two signals allowed for easy computation of 
the true power (taking phase difference into account) at all frequencies. A LabVIEW 
code was written to run an automated ANSI S12.54 sound power test using a wav file 
input. The sound power level output and electrical input (watts) were stored. MATLAB 
was used to process the data.   

For FCAC and TCAC, data were obtained using pure sine wave inputs at one–third-
octave (OTO) band center frequencies ranging from 100 Hz to 20 kHz. Efficiency was 
calculated using 

 𝐹𝐶𝐴𝐶	&	𝑇𝐶𝐴𝐶	𝐸𝑓𝑓.= 8'9:;6<'	"9=>?	K:6	.6	6@>	J:BC.E>B6.G
FG>'6?<'.G	HBI:6	"9=>?	.6	D.G$	6@>	J:BC.

∗ 100    EQ3-6 

The acoustic power is created at the fundamental, but the input electrical power is an 
octave below the fundamental. Therefore, the efficiency is the ratio of the fundamental 
acoustic response to the electrical input at half of the fundamental. 

THD was calculated for FCAC and TCAC using the 2nd-6th harmonics because there is 
no significant contribution to the total power from the higher harmonics. 

3.4 Results 

Figure 3-4 shows the efficiency of FCAC and TCAC compared to the second harmonic 
AC efficiency. This shows that the FCAC and TCAC processing methods produced an 
efficiency of 1.01 E-6 to 1083 E-6 percent and 1.26 E-6 to 388 E-6 percent with 72 Wrms 
input power, respectively. The FCAC appears to be artificially high for frequencies above 
1 kHz. The maximum efficiency should be the second harmonic AC efficiency because 
all of electrical energy goes into the second harmonic. For FCAC, there is some energy 
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dispersed during the decimation process and therefore it is expected that its efficiency 
would be slightly less than the AC second harmonic efficiency. Regardless, the FCAC 
and TCAC methods are not orders of magnitude more efficient than the other signal 
processing techniques. Their main benefit is that with these pre-processing techniques a 
standard off-the-shelf amplifier can be used to power CNT loudspeakers. 

 
Figure 3-4: Experimental data comparing second harmonic AC efficiency to fundamental FCAC 
and TCAC efficiency. 72 wrms total input power was used and efficiency for AC was taken from 
Bouman et al. [5] while the efficiency for FCAC and TCAC was calculated using EQ3-6. [27] 

Figure 3-5 demonstrates that the THD for FCAC and TCAC vary from 0.68-59% and 
1.7-11%, respectively. This is better than the DCAC and AMAC processing techniques 
[5], but it should be noted that these are for single frequencies. When the FCAC and 
TCAC algorithms are optimized for single frequencies they can create perfect half 
frequency content. When processing complex signals these methods are limited. For 
example, subjectively using speech and music the FCAC and TCAC produced 
subjectively low quality reproduction. Based on that observation, THD is not the best 
sound quality metric and a more robust metric is needed that can be used with complex 
signals. 



www.manaraa.com

32 

 
Figure 3-5: Data showing THD for FCAC and TCAC. THD was computed using EQ2-4. [27] 

A summary comparison of FCAC, and TCAC is shown in Table 3-1.  

 
Table 3-1: Summary of experimental data for FCAC, and TCAC signal processing techniques. 
The total input power for all tests was 72 Wrms with frequency ranges of 100 Hz to 10 kHz.  

 Efficiency (µ%) THD (%) 

FCAC 1.01 - 1083 0.68 - 59 

TCAC 1.26 - 388 1.7 - 11 

3.5 Conclusions 

Two new methods for thermoacoustic loudspeaker drive signal processing were 
leveraged from the hearing aid industry. Spectral envelope decimation of an AC Signal 
(FCAC) and dynamic linear frequency compression of an AC signal (TCAC) are methods 
that can be used with class D amplifiers. There efficiencies were 1.01 E-6 to 1083 E-6 
percent and 1.26 E-6 to 388 E-6 percent with 72 Wrms input power, respectively. These 
efficiency levels are on the same order of magnitude as previously published methods 
that require class A/B amplifiers. FCAC and TCAC had THD of 0.68-59% and 1.7-11%, 
respectively. While these THD levels are significantly lower than previously published 
methods, THD was found to be a poor sound quality metric for complex signals. This 
study used single tone signals, but when complex signals (e.g. speech, music) were used 
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the result was subjectively poor. A new sound quality metric is needed to be able to 
objectively compare thermoacoustic drive signal processing techniques. 
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4 Subjective evaluation of carbon nanotube 
loudspeaker drive signal processing methods using 
single word techniques 

4.1 Abstract 

Carbon nanotube loudspeakers make sound by generating heat as opposed to vibration. In 
this evaluation, paired comparison and modified rhyme test jury study techniques were 
used to evaluate the intelligibility of spoken single words processed with different drive 
signal processing methods. A jury study was conducted using a novel in-vehicle drive up 
format. Ultimately, direct current offset was found to be the most intelligible processing 
method for the carbon nanotube loudspeaker. 

4.2 Introduction 

While the theory for creating sound with heat, as opposed to vibration, was laid out as 
early as the late 19th century [1], [2], there have been limited physical devices that utilize 
the technology. Well known examples of this include plasma speakers and the generation 
of thunder by a lightning strike, but both are rather unwieldy to tame. Fortunately, in 
2006 Yu et al. demonstrated a new material, carbon nanotubes (CNT), which could use 
the thermoacoustic principle to generate sound [3]. With benefits including that CNT 
loudspeakers are extremely lightweight, have formable geometry (i.e. directivity), no 
moving parts, no reliance on rare earth metals, and frequency response from DC to 
100kHz [8], [13], [28], [29], CNT loudspeakers show much promise in a variety of 
applications [30]–[36]. 

Since the initial work done by Yu et al., much has been revealed about these acoustic 
transducers [9], [12], [16], [37]–[49] including development of their base physical 
properties [17], [18], [50]–[57] and the exact makeup of the carbon structure to be used 
(e.g. graphene, multi-walls nanotubes, etc..) [25], [58]–[68]. A notable discovery was that 
the CNT loudspeaker’s radiated sound pressure is directly proportional to input electrical 
power rather than input electrical voltage such as moving coil loud speakers [11]. This 
results in a doubling of frequency content (e.g. if you input a 1kHz electrical voltage 
signal into a thermophone, you will hear a 2 kHz sound pressure wave). Additionally, 
they are inefficient when compared to traditional moving coil loudspeakers (~1e-6% 
power efficiency) [5], [21], [69], [70], the frequency response for open thermophones is 
not flat, but logarithmically increases with frequency [11], and they damage easily if not 
supported [71]. The CNT loudspeaker remains a positive addition to the limited sound 
generation toolbox of audio engineers, but unfortunately comes with significant 
restriction on its practical application, primarily to applications where weight savings 
and/or custom directivity are important and energy is abundant. 
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To date, all of the evaluation of CNT loudspeakers has been objective (e.g. sound 
pressure at a known distance, sound power, and total harmonic distortion). This work 
evaluates subjective sound quality of these transducers whereby single word spoken text 
is used to study the drive signal processing methods. The study utilized a novel drive-up 
jury study format that proved to be an effective and safe alternative to traditional in-lab 
studies. 

4.3 Background 

4.3.1 Drive signal processing methods 

One of the prominent concerns with CNT loudspeakers is that they double all input 
frequency content. This is a trivial issue in the single sine wave case, because if, for 
example, a 400Hz sound pressure wave is desired, then a 200Hz electrical sine wave can 
be input. Yet what about complex transient signals such as speech or music? To solve this 
problem, drive signal processing of the desired audio is required before amplification. To 
date, there have been many drive signal processing methods used that all have their own 
positives and negatives. 

In alphabetical order, the common processing methods are amplitude modulation (AM) 
[14], direct current (DC) offset [4], [72], pulse amplitude modulation (PAM) [73], and 
spectral envelope decimation (SED) [24].  

AM processing is the same as AM radio, where the signal is modulated by a high 
frequency carrier wave such that the envelope of the final waveform is that of the original 
signal. Important variables for AM processing are the frequency of the carrier wave and 
the modulation depth (i.e. the ratio of signal to carrier amplitudes). AM processing can be 
used with a class D amplifier, but must have a maximum frequency response of the 
carrier plus maximum signal frequency content. For example, the carrier is typically 
above 20kHz so humans can’t hear it. Therefore, if a 1kHz sine wave is modulated with a 
20kHz carrier, the amplifier needs to have frequency response to 21kHz. This can be 
limiting since most commercially available class D amplifiers have low pass filters 
incorporated at or near 20kHz. The modeling equation for AM is shown in EQ4-1,  

 

												𝑦(t) = (1+AMx(t))*ACsin(2πFCt) EQ4-1 

 

where y is the signal played into the amplifier (volts) as a function of time, t (seconds), 
AM is the amplitude of the modulated signal (volts), x(t) is the modulated signal, AC is the 
amplitude of the carrier signal (volts), and FC is the frequency of the carrier (Hz). 
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DC processing takes the signal and applies a static offset. The important parameter for 
this processing is the ratio of the offset to the signal amplitude. DC offset requires a class 
A/B amplifier which is typically more expensive than a class D amplifier. The modeling 
equation for DC is shown in EQ4-2, 

 

												𝑦(t)	=	B + x(t) EQ4-2 

 

where y is the signal played into the amplifier (volts) as a function of time, t (seconds), B 
is the amount of offset (volts), and x(t) is the signal to be modulated. 

PAM processing, which is different than pulse width modulation (PWM) [4], takes a 
constant duty cycle square wave and varies the amplitude of the pulses such that the 
envelope of the final signal replicates the original signal. The important parameters for 
this processing method are duty cycle and pulse square wave frequency. This processing 
method requires a very high frequency amplifier (e.g. Radio Frequency) which can be 
very expensive especially with high power output requirements. The modeling equation 
for PAM is shown in EQ4-3, 

 

												y(t) = AIp(t) * x(t) EQ4-3 

 

where y is the signal played into the amplifier (volts) as a function of time, t (seconds), Ap 
is the amplitude of the pulse train, p(t) is the unity square wave pulse train at a certain 
duty cycle (i.e. percent high versus low), and x(t) is the signal to be modulated. 

SED processing was originally developed in the hearing aid industry to pitch shift content 
lower so those with high frequency hearing damage could hear the content at a lower 
register. It uses the results from 75% overlap Fourier transforms to decimate the 
amplitude values by a factor of two while keeping the phase of the spectral lines the 
same. The result is then inverse transformed back into the time domain. This method can 
be use with common class D amplifiers. 

4.3.2 Jury study methods 

There were two main goals of this subjective effort: 

1) Are CNT loudspeakers intelligible?  

(Absolute – Yes/No) 
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2) Which processing method is the best to use for intelligibility?  

(Relative - Ranked) 

 

The above questions are subjective, so in order to answer them a subjective test is 
required. A jury study was conducted and in order to limit the scope and complexity, 
single word spoken text was chosen for evaluation. To investigate intelligibility (goal #1 
above), a modified rhyme test (MRT) was conducted [74].  

In a MRT test, subjects (i.e. jury participants or jurors) listen to speakers pronounce 
words (e.g. “The word is send”)  and select the word spoken from a list of similar words. 
The common table (Table 4-1) has 6 columns and 50 rows with each row being a set of 
words with similar phonetic properties. All rows/sets have the same consonant-vowel-
consonant style while varying either the initial or final consonant [75]. While the subject 
listens to the word spoken, the six similar words, including the one spoken, are shown on 
the screen. The subject then has to select which word was spoken. 

 
Table 4-1: The first three rows of the MRT 300 word list [75] 

Went Send Bent Dent Tent Rent 

Hold Cold Told Fold Sold Gold 

Pat Pad Pan Path Pack Pass 

… … … … … … 

 

A paired comparison test was chosen to rank the processing techniques (goal #2 above). 
The method has been used many times and the methods of processing the data are well 
documented [76]. This method requires the subject to listen to two paired samples and 
then select an answer based on a prompt. In this case the subject was to answer which one 
is more intelligible, but paired comparison can be used for many other prompts (e.g. 
which audio clip is more harsh, which audio clip would you prefer your car sound like, 
which food sample tastes better, etc.). With this method, it is important to avoid biasing 
the subject. For example, choosing which sample is played first is important. It is 
recommended to repeat at least a subset of the samples in the opposite order. For 
example, if sample “A” was played first and followed by sample “B,” at some point later 
in the study the subject should hear B followed by A and answer consistently. 
Additionally, it is recommended that there are only two options for the subject to choose 
from when answering (e.g. A>B or B>A). Including an option stating that they are the 
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same has been known to cause poorer juror performance in any challenging comparison 
because they are not forced to make a decision [76, p. 139].  

4.4 Methodology 

4.4.1 Drive signal processing & Transducers 

The drive signals compared in this study were Amplitude Modulation (AM) into a CNT 
loudspeaker, Direct Current (DC) offset into CNT, Pulse Amplitude Modulation (PAM) 
into CNT, Spectral Envelope Decimation (SED) into CNT, and Unprocessed into both a 
traditional moving coil loudspeaker (TradUP) and a CNT loudspeaker (CntUP). For AM, 
a carrier frequency of 45kHz was used so that the side bands would be above the audible 
range even if modulating 20kHz content. To set the modulation index of the transient 
spoken word files, the carrier amplitude was set at a fixed level of the fast a-weighted 
level maximum (i.e. LAFmax) for the signal to be modulated. This means that the 
modulation index was 1 at the moment when the signal had its maximum LAF level, but 
varied throughout the other parts of the signal. 

For DC offset, the amount of offset was also set to the LAFmax. For PAM, duty cycle 
was set to 10% with a 25kHz square wave carrier frequency. For SED, a blocksize of 
1,024 was used on the 48kHz sampling frequency audio with a decimation factor of two. 

The unprocessed method was used on a traditional moving coil loudspeaker (TradUP) 
and a CNT loudspeaker (CntUP), meaning there was no pre-amplification processing 
done. TradUP is linear with output pressure frequency equal to input voltage frequency 
while CntUP is nonlinear with output pressure frequency twice that of input voltage 
frequency. The traditional loudspeaker used in the study was the author’s estimate of a 
well-known lower end monitor. The transducer selected was an Avantone Pro Active 
MixCube with built in amplifier  (Figure 4-1). The MixCube is an unprocessed full range 
driver. 
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Figure 4-1: Acquired data showing the frequency response (Pa/Volt) for the Avantone Pro Active 
MixCube. The data was acquired at 1000 points logarithmically spaced between 20 and 20kHz. 
The input was a single sine wave for 20 seconds while the output was averaged for noise 
reduction. The distance from loudspeaker to microphone was 1m. 

For the CNT loudspeaker, multiwalled carbon nanotube layers with ~ 15nm tube 
diameters and 500µm tube lengths were drawn from a forest approximately 12mm tall. 
Each layer was laid across two 6mm diameter copper rods five layers thick. There were 
six stacks of five layers in total over the copper rods for an overall dimension of ~9cm 
tall by 4.5cm wide by 75nm thick (Figure 4-2 & Figure 4-3). 

 
Figure 4-2: Acquired data showing the pseudo frequency response (Pa) for the CNT loudspeaker 
used in this study. As a result of the frequency doubling, the input voltage is at half the frequency 
of the output pressure wave so the common averaged frequency response measurement cannot be 
computed. Therefore, the authors decided to present what is more commonly referred to as the 
sound pressure linear autopower with constant voltage input as the pseudo frequency response. 
The data was acquired at 1000 points logarithmically spaced with input voltage from 10Hz to 
9kHz and output pressure between 20Hz to 18kHz. The input was a single sine wave for 20 
seconds while the output was averaged for noise reduction. The distance from loudspeaker to 
microphone was 1m. 
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Figure 4-3: Picture of the CNT speaker used in this study. Note the CNT was not wrapped on 
both sides of the copper rods (i.e. it was single sided). 

Comparing the speakers another way, their step responses were taken (Figure 4-4). The 
obvious difference is the incredibly short duration of the CNT loudspeaker pulse. This 
was expected. CNT loudspeakers have no moving parts and a frequency response to 
100kHz. They can respond faster than a moving coil loudspeaker. Additionally, the 
MixCube has an enclosure so it has reflections and resonances as well at better low 
frequency response that contribute to a wider step response. 
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Figure 4-4: Step response comparing the CNT loudspeaker (a) to the traditional moving coil 
loudspeaker (b). Note the input voltages (y-axis) are different, but they generated a similar peak 
output pressure ( ~83dB) for their current amplification settings. Both measurements were taken 
at 1 meter distance. The CNT speaker was amplified with a Techron 7224. The Mixcube used its 
internal amplifier. The data was acquired at room temperature (~21C). 

4.4.2 Sample recording 

The spoken MRT word recordings for this study came from the National Institute of 
Standards and Technology (NIST), which has high quality recordings of nine speakers (4 
females/5 males of varying age) speaking the complete 300 word list as “the word is X” 
[77].  

To illustrate the complete signal preparation process, the 2700 audio files (9 speakers * 
300 words) were acquired from NIST. They were de-noised with spectral noise gating as 
the default files had noticeable broadband noise on them and the author did not want to 
bring that noise into the processing. The less noisy audio files were processed by all of 
the previously described methods. Then those files were played into the CNT speaker via 
an AE Techron 7224 1kW A/B amplifier fed by a National Instruments 9269 analog 
output card running a custom file playing program. The playback was recorded by a Head 
Acoustics HMM II.1 Aachen head 1m away (0.5m for PAM) in a full anechoic chamber. 
The data acquisition unit was a Siemens Test Lab SCADAS III with PQA II analog input 
cards. For the unprocessed traditional moving coil loudspeaker (TradUP), the de-noised 
files were played directly into the built in amplifier on the device. Then both channels of 
the recorded binaural files were normalized so that their LAFmax was 0.03 Volts for 
export into a +/-1 Volt WAV file. 0.03V was chosen because it was the value that 
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allowed for export without clipping of all files. The normalized WAV files were what 
was played back to the subject’s headphones during the study. 

Throughout the recording process, a top priority was to make sure there was good signal 
to noise for each recording. Some of the processing methods (e.g. PAM) were not able to 
be amplified well by the AE Techron 7224, because the 25kHz square wave and its 
harmonics get attenuated quickly even with an amplifier with ~500kHz roll off. In cases 
such as this, the speaker had to be moved closer than 1m in order to get good SNR by the 
instrument grade class A 12.7mm microphones in the Aachen head. The high dynamic 
range microphones and 24 bit Analog to digital converter on the data acquisition units 
helped with this. 

To ensure there was no risk of hearing damage to the subject, all 2700 files were played 
through the study tablet and headphone pair with Windows system volume at 100%. 
During this playback, the headphone output A-weighted sound pressure level was 
recorded with a calibrated Larson Davis AEC 206 Headphone Test System. This level 
was below 85dBA for all files. Since the study was only ~40 minutes long and the levels 
were less than 85 dBA, being a part of the study was safe for the subjects. The OSHA 
noise dose limit is 85dBA for 16 hours.  

4.4.3 Jury study 

As described previously, the jury study had two main sections: a modified Rhyme Test 
(MRT) and a paired comparison (PC). Unfortunately, due to the COVID-19 pandemic, 
the study was not able to be conducted in a lab. The authors understand that performing a 
jury study in a controlled setting with minimal background noise and distraction is 
desired [78], but use of the planned lab space was not possible when this study was to be 
executed in March of 2020. Therefore, the authors adapted the study to be performed on a 
tablet inside of a vehicle and conducted it in August of 2020. The subjects signed up for a 
time, drove up to the proctor who was in a parking lot, and the proctor would ask the 
required COVID-19 screening questions and then hand the participant a sanitized tablet 
with headphones in single-use covers. The tablet used was an i3 Microsoft Surface and 
the headphones were Sennheiser HD598SE open-backed over ear headphones. This tablet 
amp/headphone pair were quantified (Figure 4-5). The subject completed the study in 
their car after which they received $20 in compensation. The subjects were not required 
to do anything in regard to their vehicle. They were only highly encouraged to leave their 
windows shut and HVAC fan as low as possible, but maintaining comfort was the most 
important. However, as the study took place in a parking lot, there were many more 
visual distractions than there would have been in an ideal setting with a closed sound 
quality test room. 
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Figure 4-5: Acquired data showing the frequency response (Pa/Volt) for the headphones and 
computer preamp combination used in this study. The data was acquired at 1000 points 
logarithmically spaced between 20 and 20kHz. The input was a single sine wave for 20 seconds 
while the output was averaged for noise reduction. The headphones were attached to and 
measured with a Larson Davis AEC 206 Headphone Test System connected to a National 
Instrument 9234 24 bit ADC. 

The software the subject interacted with was a custom written National Instruments 
LabVIEW program that guided the subject through the study, played the files, and 
exported the results. The software itself had six main parts: 

1) Demographics questions 

2) Five seconds of background data collected using the tablet microphone 

3) Practice rounds with two PC and two MRT example questions. The files 
chosen for the PC section were very different for the first round and vary similar 
for the second round to help prepare and train the subjects. 

4) Paired Comparison - 155 questions 

5) Modified Rhyme - 270 questions 

6) Feedback section  

There was no formal training or demographic requirements of the subjects. The only 
requirements were age between 18 and 65 and not be a non-resident alien for tax 
purposes for the compensation. Jury members were recruited from a broad demographic 
of people to represent a scenario where there is widespread adoption of this technology in 
the audio industry. Additionally, the subjects were not required to take a hearing test 
before participating. While hearing tests are a popular choice for jury studies, subject 
quality for this test was established with different methods described below in the PC 
section. This allowed the authors to avoid collecting sensitive medical data.  
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The initial goal was a study that would take approximately 30-45 minutes to complete. 
For the MRT portion of the study there were 270 questions. 270 divided by the six 
methods meant that there could be 45 randomly selected questions from the 2700 pool of 
MRT words for each method, making sure they were evenly selected from the nine 
speakers. An example of what the screen looked like during the MRT section is shown in 
Figure 4-6. Note, the subjects could not repeat hearing the sample in the MRT portion of 
the test. 

 
Figure 4-6: Screenshot of the MRT portion of the study 

For the PC section, there were six methods to compare (AM, CntUP, DC, PAM, SED, 
and TradUP). These methods can be thought of like sports teams that need to play each 
other in a tournament. In order for all of the teams to play each other there would need to 
be 15 games or in this case 15 pairs where method A competes against method B. As 
previously discussed, in paired comparisons the order of samples played matters. 
Continuing the sports analogy, this is equivalent to home field advantage. The authors 
wanted to test for A being played first (AàB) and also B being played first (BàA) to 
check for consistency of subject response as a juror quality metric. This was especially 
important since no hearing tests were done with the subjects. Additionally, a few 
duplicate pairs were used to test for consistency. This led to 155 questions for the PC 
portion. Six methods leads to 15 AB pairs per word so that allowed for six words or 75 
total AB pairs. Including 100% duplication of AB and BA that brings the 75 pairs to 150. 
On top of that the authors included 5 ABAB duplications. So there were 155 total 
questions. The six words were randomly selected from the 2700 options, making sure 
each one was a different speaker. An example of what the screen looked like during the 
PC section is shown in Figure 4-7. Note, the subjects could repeat hearing the sample in 
the PC portion of the test. 
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Figure 4-7: Screenshot of the PC portion of the study 

4.5 Results 

4.5.1 Demographics and juror quality 

Overall, 47 subjects participated in the study. Using the PC portion of the data, subject 
quality was evaluated to see which subject datasets should be removed. Six were 
removed due to inconsistent ABC response. Meaning, for example, if the subject said A 
was better than B which was better than C. Then they also needed to say A was better 
than C. Six of the subjects did not do that enough to make their dataset usable. It is 
interesting to note that the six removed were all inconsistent with how they ranked CntUP 
versus SED versus PAM, hinting that CntUP/SED/PAM likely have similar intelligibility. 

Two subject datasets were removed due to insufficient repeatability in AB vs BA 
responses. Finally, one additional dataset was subjectively removed by the author due to 
a low ABAB duplicate response of 20% correct and low ABBA accuracy of 74% 
consistent. In total that left 38 usable datasets.  

The resulting demographics are shown in Figure 4-8. The subjects were mostly college 
age males with English as their first language, no known hearing issues, and no prior jury 
study experience. When asked how they would rank their typical audio listening 
experience, where 1 was never listen critically and 5 was always listen critically, a 
majority of the time the subjects ranked themselves as a 3 or 4. 
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Figure 4-8: Pie charts showing the demographic distribution of the n=38 subjects used in this 
study. For listening experience, the higher the number the more critical the subject ranked their 
typical speaker listening. 

4.5.2 Modified rhyme test 

The first step in processing the MRT datasets was to determine the number of correct 
answers each method had for each subject. The percent correct for that method for that 
subject was then computed. The averaged percent correct for each method over all 
subjects was then determined. The results are shown in Figure 4-9. For example, on 
average for all subjects the word was correctly selected 80% of the time for CntUP. 
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In order to determine which method performed better (i.e. had a higher mean correct 
selection percentage), the data was analyzed with a Shapiro test and found not to be 
normally distributed. Therefore, a non-parametric Dunn’s test was used with Bonferroni 
correction for the p-values. With a Dunn’s test the null-hypothesis is that the means are 
the same (i.e. statistically not different). If the alpha value is below 0.05 then it can be 
said that there is a statistical difference in the percent correct means. The summarized 
results are shown in Table 4-2. The percent correct value was not statistically different 
when listening to TradUP versus DC. Interestingly, this was also true for AM vs DC, but 
not true for TradUP vs AM (i.e. there was a statistical difference in the mean percent 
correct values). In a similar way, CntUP = SED but CntUP > PAM. SED and PAM 
percent correct means were not statistically different. 

 
Figure 4-9: A boxplot of the MRT correct selection data by drive signal processing method. 
Higher is better. 
 

Table 4-2: Method rank from MRT selection accuracy data 

Rank Method 

1 TradUP = DC 

2 AM = DC 

4 CntUP = SED 

5 PAM = SED 

Note: An equals sign represents no significant difference (i.e. not 
rejecting the null hypothesis). Moving down a row represents 
statistical difference (a=0.05) 
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The time it took a participant to select an answer for the MRT portion of the study was 
also investigated. This data is summarized in Table 4-3. Using a Dunn’s test again, 
TradUP and DC were not statistically different in selection time while the other methods 
followed a similar trend to the selection accuracy rank data (Table 4-4). 

 
Table 4-3: MRT time to select by method in seconds. Lower is better. 

 TradUP DC AM PAM SED CnUP 

Avg 1.15 1.18 1.28 2.10 1.71 1.89 

Stdev 0.86 0.82 0.94 1.71 1.30 1.48 

       
Table 4-4: Method rank from MRT time to select data. 

Rank Method 

1 TradUP = DC 

3 AM 

4 SED 

5 PAM = CntUP 

Note: An equals sign represents no significant difference (i.e. not 
rejecting the null hypothesis). Moving down a row represents 
statistical difference (a=0.05) 

4.5.3 Paired comparison 

The first step in processing the PC datasets was to determine the number of wins each 
method had versus all other methods for every subject. From this, that subject’s 
preference rank was determined. For example, Table 4-5 shows the compiled wins for 
participant 1. To illustrate how to read the table, start at column “PAM”  and then move 
down to row “SED” and note the cell value is 1. This means that PAM won versus SED. 
If the cell was 0 it would mean that PAM did not win versus SED. This table  was made 
for each subject by looking at how many times each method won versus another method. 
If the method won a majority of the time in the five meetings, then a 1 was placed in 
Table 4-5 in that corresponding cell. Compiling the win table for each participant creates 
the subject’s rank. If there was a tie, then both methods shared the higher rank. For 
example, if PAM and SED were tied for 4th, then they were both recorded as placing 4th 
when computing the average ranking. 
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The overall average ranking is shown in Figure 4-10. TradUP was always ranked best at 
5 because the average ranking was 5 with a standard deviation of 0. In order to determine 
the statistical rank, the non-parametric Dunn’s test had to be use again due to none 
normally distributed data.  The results of this are shown in Table 4-6. The average rank of 
TradUP was not statistically different than DC, but similar to the MRT data, TradUP was 
statistically ranked higher on average than AM and AM was not statistically different 
than DC. PAM, SED, and CntUP were not statistically different from one another, but 
were statistically ranked lower on average than TradUP, DC, and AM. 

 
Table 4-5: Example wins table for participant 1. The axes representation the different signal 
processing methods. A value of 1 means that column method beat that row method. 

 AM DC PAM SED TradUP CntUP 

AM 0 1 0 0 1 0 

DC 0 0 0 0 1 0 

PAM 1 1 0 0 1 1 

SED 1 1 1 0 1 1 

TradUP 0 0 0 0 0 0 

CntUp 1 1 0 0 1 0 

 

 
Figure 4-10: A boxplot of the average rank of the different processing methods based on the PC 
data. Higher is better. 
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Table 4-6: Method rank from PC data 

Rank Method 

1 TradUP = DC 

2 AM = DC 

4 PAM = SED = CntUP 

Note: An equals sign represents no significant difference (i.e. not 
rejecting the null hypothesis). Moving down a row represents 
statistical difference (a=0.05) 

Additionally, the number of ABBA inconsistent answers by method was tabulated (Table 
4-7). This shows the number of times a given method was involved when the subject 
inconsistently answered their preference. The rank trend in Table 4-7 follows that of the 
PC rank (Table 4-6). It is interesting to note that TradUP was only part of ABBA 
inconsistent response 19 times which is much less than the other methods. The minimal 
ABBA inconsistent response for TradUP is expected because it was always ranked the 
most intelligible in the PC rank. While the rank data compares the methods relatively, the 
value of Table 4-7 is the  absolute comparison to 0. 

Looking at the data a different way, the numbers of wins each method had against other 
methods was tabulated (Table 4-8). Meaning every time an ABBA question pair was 
answered consistently the winning method was given a point. The sum of these points is 
shown in Table 4-8. The rank trend also matched the trend of the PC rank (Table 4-6), 
but had CntUP and PAM in an alternate positions compared to the ABBA inconsistent 
answer rank (Table 4-7).  

 
Table 4-7: ABBA inconsistent answers by method. Lower is better. 

TradUP DC AM PAM SED CntUP 

19 159 197 228 231 270 

      
Table 4-8 Method win count. Higher is better. 

TradUP DC AM CntUP SED PAM 

1156 767 630 199 139 82 

Note. This data includes all correct ABBA answered from all 47 participants. 
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The PC portion of the study was also timed. When a new question would start the 
software would automatically play sample A and then sample B. The time from when 
sample B finished playing until an answered was selected was recorded. This data was 
averaged and compiled (Table 4-9). Looking at it statistically again with a Dunn’s test, it 
was found that answers for the traditional speaker (i.e. TradUP) were statistically quicker 
than all CNT methods (a=0.05). CNT methods were all statistically not different from 
one another. 

 
Table 4-9: PC Time to select by method in seconds. Lower is better. 

 TradUP DC AM PAM SED CntUP 

Avg 1.05 1.72 1.98 2.06 1.84 2.20 

Stdev 1.32 2.62 2.86 3.03 2.44 3.21 

       

4.6 Conclusions 

In conclusion, it was found that a CNT loudspeaker using DC offset processing was just 
as intelligible as a traditional moving coil loudspeaker. AM, PAM, SED, and CntUP were 
statistically less intelligible than TradUP. However, DC offset requires a class A/B 
amplifier which may not always be an option. Using the PC rank data, it was found that 
AM was considered equally intelligible as DC and that AM/DC were more intelligible 
than PAM/SED/CntUP. Therefore, AM should be used if a high enough frequency 
response class D amplifier is an option.  

Further, given the circumstances with COVID-19, the execution of a jury study was 
shown to be possible using participants’ automobiles and a drive-up test site. This format 
led to various random additional variables to account for including rain, wind, and other 
nearby drivers. The data led to statistically significant results regarding the intelligibility 
of CNT loudspeakers.  
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5 Correlation of jury study results and psychoacoustic 
metrics 

5.1 Abstract 

Multiple linear regression was used to determine a weighted set of psychoacoustic 
metrics that best correlated to the jury study results discussed in Chapter 4.  Thirty-three 
metrics, including a new custom metric, were reduced to a non-colinear set of metrics 
using factor analysis and principle component analysis. That metric set was iterated over 
to determine the optimal metric combination producing the best correlation to the study 
results. The resulting best fit included only one metric: The novel Total Harmonic 
Distortion for Speech Intelligibility (THDSI). The fit from the final regression was R2 = 
0.12. In addition to the regression analysis, a modern speech recognition machine 
learning model was compared to the jury study results.  

5.2 Introduction 

The execution of a jury study to understand the subjective response of humans to a 
certain stimulus is a laborious process that would ideally be replaced with a 
psychoacoustic metric i.e. an objective metric proven too closely follow a subjective 
preference. That way when a new stimulus arises there is no need to execute a full jury 
study. The stimulus can be processed computationally by the psychoacoustic metric 
resulting in an estimate of the subjective response as if a jury study were completed.  

The use of psychoacoustic metrics is very common in the field of acoustics. Humans 
psychoacoustic response to pressure waves is drastically different than the objective 
metric of pressure. On a broad level humans perceive sound differently based on the 
frequency and level of the sound, but on a very specific level humans hear sound 
differently based on a variety of factors (e.g. how much background noise there is, what 
precedes the sound, and even what the human is doing while listening to the sound). 
Therefore many psychoacoustic metrics have already been developed. The most common 
metrics are weighted sound pressure level (dBA/dBC) and loudness (sones) which seek to 
account for the broad frequency and level discrepancies between objective pressure and 
human perception. There are many more psychoacoustic metrics which tend to lend 
themselves toward specific usage applications. Some examples include (in alphabetical 
order): 

Cepstrum: The inverse Fourier transform of the logarithm of a Fourier transformed 
signal. Cepstrum makes periodic events more pronounced. Usage: Gearbox noise analysis 

Impulsiveness: This metric attempts to transform the non-linear response humans have to 
fast and large changes in pressure level to a linear metric. Usage: Gunshot analysis 

Kurtosis: A measurement of how quickly the signal changes. Usage: Health monitoring 
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Prominence ratio: the ratio of a tone level to noise. This metric is similar to the other 
tonal psychoacoustic metrics Tonality and Tone-To-Noise. Usage: Automotive turbo 
whine 

Roughness: This metric seeks to quantify the psychoacoustic response to signal 
modulation for signal modulations up to 70Hz. This is very similar to the low frequency 
modulation psychoacoustic metric Fluctuation Strength (modulations <4Hz). Usage: 
Electric razor sound quality 

Total harmonic distortion (THD): This is the ratio of energy in the fundamental compared 
to the summation of the energy in all of the harmonics. Usage: 60Hz electrical power 
quality 

Total harmonic distortion + noise (THDN): Similar to THD, this metric is the ratio of the 
energy in the fundamental to the energy in the entire signal. Usage: Amplifier 
performance quantification 

Sharpness: This metric tries to account for high frequencies being more annoying to 
humans than low frequencies. It can be thought of as a high frequency weighting 
function. Usage: Vacuum cleaner sound quality 

Speech intelligibility index (SII): The percent of speech that is intelligible given a 
specific background signal and speaker signal. SII (1997 ANSI S3.5) is an improvement 
on the 1969 ANSI S3.5 Articulation Index (AI) metric [78]. Usage: Determine how 
difficult it would be to understand the passenger in your vehicle for difference vehicle 
conditions 

Speech transmission index (STI): The percent of speech that is intelligible given a 
specific speech signal and a perturbed speech signal [79]–[81]. Usage: telecom industry 
to understand the effects of transmission across their service. 

While use of these metrics in their specific usage application is obvious, they can even be 
used in combination with other metrics. This is common when attempting to correlate to 
jury study results. There are many examples from architectural acoustics [82]–[86], the 
automotive industry [87]–[93], and beyond [94]–[99]. The basic idea is to perform a 
regression analysis on the metrics (i.e. the independent variables) to see how they 
correlate to jury study results (i.e. the dependent variables). When performing subjective 
to objective comparisons historically, coefficient of determinations (R2) have been found 
to be as high as 0.5-0.8 in Vardaxid et al.’s literature review of building sound quality  
[100], 0.5 in Gozalo et al.’s sound scape comparison [98], 0.92 for Moravec et al.’s 
washing machine comparison [99], and 0.92 for Astolfi et al.’s work in secondary 
education classrooms [82].  

There are many different types of regression analyses that can be done. Typical 
regression analysis is done when the dependent variable is not categorical (e.g. is can be 
any value). Logistic regression is used when the dependent variable is categorical (e.g. 
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Yes/No). Additionally under the regression category is linear and non-linear methods. 
Both of these methods have many different models that have subtle assumption 
differences (e.g. the intercept is forced to 0). The standard regression is single linear 
regression (aka linear regression), 

												𝑦 = 𝑚𝑥 + 𝑏 EQ5-1 

where y is the dependent variable, x is the independent variable, m is the weighting factor 
applied to x and b is the intercept. If there were multiple metrics multiple linear 
regression could use used, 
 

												𝑦 = 𝑚/𝑥/ +𝑚%𝑥% +𝑚B𝑥B +⋯+ 𝑏 EQ5-2 

where y is the dependent variable, xn is the nth metric, mn is the nth weighting factor, and 
b in the intercept. Multiple regression can also be done with non-linear models as well as 
logistic regression analysis. 

When performing regression analysis it is important that the dependent variables not be 
colinear [87]. Collinearity is a way to express high correlation (R2 >  0.7) among 
dependent variables of a model. Ideally there is low correlation among the dependent 
variables and high correlation between the dependent variables and the independent 
variables of a model. Collinearity or multicollinearity can result in variations of any 
individual metrics causing variation in other metrics. The general process flow to develop 
the non-colinear metric set to include in the regression model is overviewed in Figure 
5-1. 

In concert with performing regression on common metrics, it is also possible for 
researchers to develop custom metrics for the specific stimulus they are studying [91]. In 
this study, the stimulus or audio files listened to by the subject were transient speech. 
This is a very important caveat because basically all of the psychoacoustic metrics 
mentioned above are designed for stationary or at least semi stationary data where the 
level is not changing drastically over, for example, the Fourier Transform (FFT) block. 
This presents a unique challenge when processing the common metrics appropriately. 

A typical way to adapt common psychoacoustic metrics to transient signals is to compute 
a max or average value of the metrics vs time. For example, a loudness vs time array 
could be computed for a transient signal. Then the maximum and/or average of that array 
could be taken. Then that max/average single value would be the metric used in the 
regression. 
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Figure 5-1: Flowchart of how to decide what independent variables to use in a regression model 
[87]. 

One illustrative example of why transient signals are difficult is THD. It uses the 
frequency domain values to calculate the ratio of the energy in the fundamental to the 
sum of the energy in the harmonics, but the metric has no specified frequency resolution 
(i.e. acquisition time). With a 2 second audio clip, like in this jury study, the frequency 
resolution could be as low as 0.5Hz (1/2s), but that would take an average of the energy 
over the whole phrase “The word is X,” which really is not expressing the THD level of 
what is just in the word the subject was to understand, “X.” To help solve this problem, 
the signal could be processed in sections (i.e. FFT blocks) computing a max/average 
value of the THD vs time array as a custom metric. 

For THD specifically, the power industry has developed a custom transient THD metric 
that utilizes small FFT blocks and overlap [101]–[103]. In development of this transient 
THD metric the power industry had the helpful advantages of A) knowing where to 
roughly look for the fundamental (i.e. 60Hz) and B) having very little noise outside of the 
fundamental and its harmonics. These advantages make it easier to determine the 
processing parameters and develop a robust algorithm. 

As another example of the traditional approach to custom psychoacoustic metric 
generation, Huang et al. used the Wigner–Ville Transform to generate a metric for shock 
absorber sound quality [90]. 
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In addition to the more traditional approach of custom metric generation as mentioned 
above, this work also tried to look at modern speech recognition machine learning 
algorithms to see if their results could be used as an independent variable. While 
complete explanation of how the algorithms work is outside of the scope of this effort, 
the general idea is to compute a cepstrum result every 10ms and input that data into a 
trained a Hidden Markov Model (HMM) [104], [105]. The output of the model is post-
processed to give the estimated spoken word as well as confidence estimate. 

Overall, the goal of this effort was to develop a set a psychoacoustic metrics and weights 
that have the best correlation to the jury study intelligibility results from Chapter 4. Then 
if a new signal processing method is discovered, its intelligibility can be estimated 
without having to conduct a completely new jury study. In this effort the common 
psychoacoustic metrics are used where appropriate, a custom psychoacoustic metric is 
developed, and a modern speech recognition algorithm is examined. 

5.3 Methodology 

5.3.1 Dependent variable selection 

The MRT section of the jury study from Chapter 4 included 270 questions. 45 questions 
for each of the 6 processing methods (i.e. AM/DC/PAM/SED/TradUP/CntUP). The 
TradUP results were not included in this analysis as the main goal was to correlate to 
CNT results. Therefore, 225 incorrect or correct selection data points were generated 
from 38 valid jury subjects. The author did not include the 9 subjects that were thrown 
out from the paired comparison juror quality investigation outlined in Chapter 4. The 
primary dependent variable this effort tracked to was “Percent Correct” being the percent 
that the 38 jurors answered correctly when listening to a file.  

For example, the first file (of 225) listened to was “SED_F4_b01_w5.wav.” This means 
the processing method was SED, the speaker was female 4 (out of the 4 female and 5 
male options), b01 means MRT word list 1 (of 50), and the word spoken was 5 (of 6). 
Therefore, when the subject listened to the first file they heard this wav file while looking 
at all six words in list 1. The subject then selected the word they thought they heard. They 
could have either got it correct or not correct. Therefore, there was correct or not correct 
(1 or 0) data for all 38 subjects for all 225 files. From this “Percent Correct” was 
computed for each of the 225 files. This was the primary dependent variable for the 
regression.  

5.3.2 Signal processing 

In order to generate psychoacoustic metric statistics, calibrated audio files were needed. 
These files were recorded from a Larson Davis AEC206 headphone test fixture. The 
same tablet and headphone combination used in the jury study were placed in the 
anechoic chamber with the headphones on the headphone test fixture. All 225 files were 
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played through the tablet and headphones then recorded with a calibrated National 
Instruments 9234 24bit ADC module. This generated the calibrated files that were used 
when processing metrics. 

Some of the speech intelligibility metrics in this study required a “clean” and “noisy” 
signal that were time synced. The data recorded from the headphone test fixture (i.e. the 
noisy signal) had to be time synced back to original clean data. Below is an illustration of 
how that was done for file F1_b01_w3.wav representing the first female speaker 
speaking word 3 from word list 1.  

1) F1_b01_w3.wav was processed with methods AM/DC/PAM/SED/CntUP to 
generate AM_F1_b01_w3.wav, DC_F1_b01_w2.wav, etc… 

2) The generated files were played through the amplifier into the CNT speaker and 
the response were recorded with an artificial head (aka Aachen head) at a 1m 
distance (0.5m for PAM) in the anechoic chamber 

3) Those files were uploaded to the tablet and used in the jury study 
4) After the study, the tablet and headphones were placed in the anechoic chamber 

and all 225 signals were played into the headphones while the output was 
recorded with the headphone test fixture. 

5) Using cross-correlation and manual visual alignment, the noisy signals were time 
synced to the clean signal. Additionally, they were down-sampled to the same 
sample rate (i.e. 51.2kHzà48kHz) and truncated to the exact same length. 

The standard files were the “phrase” files. Meaning they contained the phrase “the word 
is X.” During evaluation of the metrics, it was also decided to try and process just the 
single word spoken (i.e. just “X”), because the dependent variable Percent Correct was 
only focused on how well the subject understood the word and the phrase “the word is..” 
that came before it would likely just cause the metric to compute incorrectly. This was 
especially concerning when taking a maximum or average value of the metric versus time 
array. In order to generate the truncated files with just the single word X, Audacity was 
used to manually select the start and stop signal indices on the clean signals. The noisy 
signals were then processed with cross-correlation and manual adjustment to get 
truncated noisy files that were time-synced to the truncated clean file. 

5.3.3 Metric development 

5.3.3.1 Common Psychoacoustic metrics 
As mentioned in the introduction, there are a variety of options for psychoacoustic 
metrics to include. The metrics selected and processing parameters for this effort are 
provided in  
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Table 5-1. Loudness and sound pressure level were chosen because they are the standard 
broad metrics. Total Harmonic Distortion (THD), THD plus Noise (THDN), and Signal-
to-Noise (S/N) were chosen because the different carbon nanotube (CNT) signal 
processing methods all have to do with harmonic distortion. The blocksize was kept small 
(1024) relative to the 48kHz sampling rate to help reduce the transient effects. It is not 
clear how Head Acoustics Artemis software determines the fundamental frequency. The 
author assumes it takes the bin with the highest value from the FFT results, which with 
the lack of other information makes sense, but is not correct for this case. Regardless, it 
was still included. Sharpness was included because the CNT is more efficient at higher 
frequencies so a metric that looks just at higher frequency content seemed logical.  
Cepstrum was included even though the author did not feel it would provide much value. 
There was no technical reason this specific data could not be processed with Cepstrum so 
the metric was included. Similarly, Kurtosis was also included. Power Spectral Density 
(PSD) was included as a different time weighting than the Sound Pressure Level (SPL). 
PSD and SPL would likely give back similar results for a stationary signal, but it was 
unclear what would happen given the transient input so it was included.  

Articulation-Band Correlation Modified Rhyme Test (ABCMRT), Speech intelligibility 
Index (SII), Speech Transmission Index (STI) and, Short Term Objective Intelligibility 
(STOI) seemed like the most promising metrics as they all look at intelligibility 
specifically so they were included. ABCMRT is an objective speech estimator that 
follows the MRT development logic. SII is used to determine intelligibility estimates for 
speech levels in noisy environments (i.e. measurements taken synchronously). STI is 
used to determine intelligibility estimates for perturbation mechanisms like phone calls 
(i.e. measurements taken asynchronously). STOI is used to determine speech 
intelligibility for degraded signals in cochlear implant simulations. 
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Table 5-1: Included standard subjective (i.e. psychoacoustic) metrics included in this analysis 

Metric [units] Processing settings Software 

Loudness [Sones] DIN 45631 
Sound field: Free  
Single values: Max/Average 
Averaged left and right ear 

Head 
Acoustics 
Artemis 

Harmonic Distortion [%] 1024 blocksize 
Overlap 50% 
THD/THDN/SN 
Single values: Max/Average 
Averaged left and right ear 

Head 
Acoustics 
Artemis 

Sharpness [acum] Method: Aures 
Loudness - DIN 45631 
Sound field: Free 
Single values: Max/Average 
Averaged left and right ear 

Head 
Acoustics 
Artemis 

Cepstrum [dB] 1024 Blocksize 
Window: Hanning 
Overlap: 50% 
Single values: Max/Average 
Averaged left and right ear 

Head 
Acoustics 
Artemis 

Kurtosis [none] Overlap: 50% 
Integration time: 125ms 
Single values: Max/Average 
Averaged left and right ear 

Head 
Acoustics 
Artemis 

Sound pressure level 
(SPL) [dB re 2e-5 Pa] 

Time weighting: Fast (125ms) 
Spectral weighting: Z 
Single values: Average 
Averaged left and right ear 

Head 
Acoustics 
Artemis 

Sound pressure level 
(SPL) [dBA re 2e-5 Pa] 

Time weighting: Fast (125ms) 
Spectral weighting: A 
L5/L10/L25 (= statistics p95/p10/p75, 
respectively) 
Single values: Average 
Averaged left and right ear 

Head 
Acoustics 
Artemis 
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Power spectral density 
(PSD) [dBA re 2e-5Pa] 

1024 Blocksize 
Window: Hanning 
Overlap: 50% 
Spectral weighting: Z 
Single values: Average/Peak hold 
Averaged left and right ear 

Head 
Acoustics 
Artemis 

Articulation-Band 
Correlation Modified 
Rhyme Test (ABCMRT) 
[%] [106] 

Used standard settings to map to all 21 
critical bands 
Input both the original “clean” file and the 
“noisy” file the subjects listened to in the 
study 
Used left ear data only 

MATLAB 

Speech Intelligibility 
Index (SII) [%] 

ANSI S3.5 
Background signal was a 40dBA overall 
level pink noise 
Single values: Max/Average 
Input both the original “clean” file and the 
“noisy” file the subjects listened to in the 
study 
Used left ear data only 

MATLAB 

Speech Transmission 
Index (STI) [%] [79]–
[81] 

Delta frequency: 2 Hz for phrase files and 
8Hz for single word files due to their short 
time duration. Default = 0.06Hz 
Input both the original “clean” file and the 
“noisy” file the subjects listened to in the 
study 
Used left ear data only 

Python 

Short Term Objective 
Intelligibility (STOI) [%] 
[107], [108] 

Input both the original “clean” file and the 
“noisy” file the subjects listened to in the 
study 
Used left ear data only 

Python 

 

5.3.3.2 THDSI 

Based on the common psychoacoustic metric investigation and the understanding that the 
different CNT drive signal processing methods are designed to cope with the frequency 
doubling issue, it became unfortunately obvious that the THD/THDN metrics would 
likely not work well. There were two main issues: 
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1) With the Artemis software, there was no way to enter a fundamental frequency or 
somehow teach the software where to look. This meant that it would likely not 
compute THD correctly. The signal to noise (S/N) metric would still be correct, 
but ideally THD could be calculated. 

2) THD has to be computed in the frequency domain. This means that some block of 
time has to be averaged. In Artemis a blocksize as low as 256 can be selected 
(~5ms at 48kHz) so this would likely help, but would create large frequency 
resolution in the frequency domain encompassing the energy from the 
neighboring spectral lines. 

To solve issue #1, it was proposed that the ideal metric could be fed both the clean and 
noisy signals, like ABCMRT, SII, STI, and STOI require and the algorithm could learn 
the correct fundamental frequency from the clean signal. For example, using short time 
Fourier transforms the time synced clean and noisy signals would be input and processed 
with the same blocksize. The algorithm would determine which bin in the clean signal 
had the highest level and call that the fundamental bin. It would then use that bin index 
and its harmonics on the noisy signal to compute THD. 

To solve issue #2, three common time-frequency analyses were investigated. Short time 
Fourier transforms (STFTs), Morlet wavelets, and Wigner-Ville transforms were studied 
for an example file. The wavelet processing had worse frequency resolution at low 
frequency versus the STFTs which was a huge issue because most of the fundamental 
frequencies were low (<200Hz) where the wavelet frequency resolution was the highest. 
While the short time resolution at high frequencies was a bonus for wavelets, the very 
high frequency resolution at low frequencies meant that wavelets would not work. The 
Wigner-Ville transform was a concern for three reasons i) the frequency domain artifacts 
from the harmonics ii)) the significant computation time with 2s of data at a sampling 
rate of 48kHz and iii) The signals included multiple “events” especially in the phrase “the 
word is X” signals. Even the single word “X” signals still had multiple events in them for 
words like “pu-ck”. The author understands that different windowing methods could have 
been used to reduce the artifacts, but STFT appeared to work sufficiently so a more in 
depth Wigner-Ville investigation seemed unnecessary. Therefore, it was decided STFT 
was the best path forward with the main concern being that frequency resolution 
increased with decreased time between STFT blocks, but a variety of blocksizes could be 
computed quickly to determine an optimal blocksize setting. 

In summary, the Total Harmonic Distortion for Speech Intelligibility (THDSI) metric 
requires inputs of time synced, same duration, clean and noisy signals. The signals are 
then STFT processed. In each spectra, the fundamental frequency bin index is determined 
from the highest value in the clean spectra. The fundamental level is set to the noisy 
signal value at that fundamental bin index. Then the harmonics are summed from integer 
multiples of the fundamental index in the noisy signal. THDSI is then computed as the 
energy in the harmonics divided by the energy in the fundamental. THDNSI can also be 
computed as the energy in all frequency bins except the fundamental divided by the 
energy in the fundamental. 
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To illustrate THDSI with an example, imagine there are two signals, an original and 
modified signal. The original is 5 seconds long, but has a 50Hz sine wave at an amplitude 
of 10 for the time period 1-5s. Then there is a modified signal which is the original signal 
after going through some perturbation. It has an amplitude of 0 for the first second. For 
time 1-2 seconds it has a 50Hz sine wave at amplitude 10 just like the original. For time 
2-3 it has two sine waves, one at 50Hz 10 amplitude, but a second at 100Hz and 2.5 
amplitude. For time 3-4 the first harmonic increases from 2.5 to 5. Then for the last 
second, time 4-5, the fundamental goes to 0 and the 100Hz sine wave at amplitude 5 still 
exists (Table 5-2). The spectrogram of the modified signal is shown in Figure 5-2. 

If the common THD metric was calculated over the whole 0-5s period, the result would 
be 25%. Artemis would improve on this assuming a small enough blocksize was used. 
Where the need for a different metric is more obvious is in the last second, time 4-5s. 
Here the original signal has energy at the fundamental, but it was, for some reason, 
reduced to 0 in the modified signal. The Artemis algorithm would falsely call 100Hz the 
new fundamental and compute a THD of 0%, because there is no energy at 200Hz, when 
it actually should be infinite. Figure 5-3 shows the result from the THDSI computation 
for the modified signal. 

 
Table 5-2: Example signals for THDSI 

Time 
Period 
(Seconds) 

Original 
Signal 

Modified Signal 

(Fundamental/Harmonic) 

Common 
THD 
computed 
over 0-5s* 

Artemis 
THD* 

THDSI* 

0-1 0 0/0 25% 0% 0% 

1-2 10 10/0 25% 0% 0% 

2-3 10 10/2.5 25% 25% 25% 

3-4 10 10/5 25% 50% 50% 

4-5 10 0/5 25% 0%** Inf 

*Values computed on the modified signal 
**Artemis computes 0% even though it should be infinite, because in the original signal 
there was energy at the fundamental. 
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Figure 5-2: STFT analysis of the example modified signal. 

 
Figure 5-3: The THDSI result from the simulated modified signal. 

Initially there are two obvious parameters for THDSI, the STFT blocksize and amount of 
overlap. The author also added three more parameters: down sample factor, A-weight, 
and a required threshold above the noise to detect a valid fundamental frequency. The 
down sample factor was incorporated to help  increase algorithm performance since the 
data were acquired at 48kHz and the frequencies of interest were in the primary human 
speech range of less than 10kHz. The A-weight parameter was important so that higher 
frequency harmonics would not increase the THD unnecessarily as  the subjects would 
not have perceived them. The threshold parameter requirement becomes obvious when 
there is silence in the file. For example, imagine a signal where the speaker says “the 
word is dent.” At the time between the words there is just noise in the signal so selecting 
the fundamental from the clean signal as the max bin value would just be selecting the 
bin with the highest noise. Therefore, a level and frequency threshold for the fundamental 
bin selection were added. The threshold level criteria, 

|𝑛𝑜𝑖𝑠𝑦𝑆𝑖𝑔𝑛𝑎𝑙(max 𝑣𝑎𝑙𝑢𝑒	𝑖𝑛𝑑𝑒𝑥)| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(|𝑛𝑜𝑖𝑠𝑦𝑆𝑖𝑔𝑛𝑎𝑙|) EQ5-3 
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where the noisySignal(max value index) is the value of the noisy signal at the index 
where the STFT spectra is maximum in the clean signal and average(noisySignal) is the 
average of all noisy signal STFT spectra values. The threshold frequency criteria required 
the fundamental to be at 20Hz or greater. If either the threshold level or frequency criteria 
were not met, then the algorithm would output a Not A Number (i.e. NaN) for THDSI 
and THDNSI for that spectral line. 

With the above listed parameters the THDSI algorithm worked as expected with 
simulated signals, but had to be altered after investigation with CNT specific signals. Due 
to CNT’s frequency response being logarithmic with respect to frequency (Figure 4-2), 
the low frequency values, where the fundamentals were in the clean signal, were 
significantly lower in output value and resulted in the THDSI calculation outputting very 
high levels (~10,000%). To help correct for this, the noisy signal was multiplied by the 
frequency response function (FRF) of the CNT loudspeaker. Figure 5-4 shows an 
example spectra where the STFT original result (blue) was modified to the corrected 
result (orange) to increase the lower frequencies values. This helped reduce THDSI levels 
that would be unrealistically high due to dividing by a very low fundamental level. It is 
important to note, as was done in Chapter 4, that the FRF for the CNT loudspeaker was 
not a true FRF since a true FRF cannot be computed, because the input power is at half 
the frequency of the output pressure. The FRF used here is more accurately called the 
linear autopower for a constant voltage input.  

 
Figure 5-4: Example STFT spectra showing how the noisy signal was modified by the pseudo 
FRF of the CNT loudspeaker. 

An example THDIS processing is shown in Figure 5-5. Figure 5-5 a shows the detected 
fundamental frequencies in the clean audio file versus time. Note: the drop outs in the 
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data are when the threshold criteria were not met and the THDSI algorithm output NaN. 
Figure 5-5 b and c show the THDSI and THDNSI results noting that the values are very 
high relative to the traditional THD metric at upwards of 3000% and 4000%+ for THDSI 
and THDNSI, respectively. These levels were significantly worse prior to adjusting the 
noisy signal by the CNT FRF.  The main reason these percentages are so elevated relative 
to the traditional THD metric is that the CNT output at the fundamental frequency 
(~100Hz in this example) is very low. Therefore, when computing THDSI the 
denominator is small. With that said, the main use of this metric will be to make relative 
comparisons of files, so the absolute high levels are assumed to be tolerable. From these 
data, the max and average over the whole time period can be computed as the single 
metrics to use in the regression. Note: Only the left ear data were processed with THDSI. 
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Figure 5-5: Example THDSI output for file AM_F1_b25_w3.wav (The word is fizz). a) shows the 
detected fundamental frequency in the clean signal (F1_b25_w3.wav) b) shows the computed 
THDSI result c) shows the computed THDNSI result and d) shows the spectrogram of the noisy 
signal. 
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5.3.3.3 Logistic Regression models of  jurors 

As mentioned in the introduction, linear regression is used when the dependent variable is 
not categorical (i.e. it can be any number). Logistic regression is used when the 
dependent variable is categorical (e.g. True/False, 5 point scale, etc..). With the percent 
correct main dependent variable requiring linear regression, the expected data flow after 
metric computation is shown in Figure 5-6. 

 
Figure 5-6: General data flow where each “psychoacoustic metric” is a common psychoacoustic 
metric or a custom metric like THDSI. 

Another custom metric idea the author had was to use 80% of the subject results (i.e. the 
training data) to develop separate logistic regression models for each juror. Then use the 
remaining 20% (i.e. the test data) to determine the performance of the models and 
compute a “Predicted Percent Correct” metric. The general idea is laid out in Figure 5-7. 
The predicted percent correct metric would be another independent variable going into 
the final regression (Figure 5-6).  

The parameters used for the logistic regression were the “liblinear” solver, an inverse of 
regulation strength of 10,000,000, and the intercept was forced to zero. These parameters 
were chosen by trial and error. 

 
Figure 5-7: General flow of data to create the predicted percent correct metric that would then be 
fed in as one of the independent variables in Figure 5-6. DV and IV represent the Dependent 
Variables and the Independent Variables used in the logistic regression models. 
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5.3.3.4 Google Speech Recognizer 

The final idea the author had for a custom metric was to use the output of a modern 
speech recognition machine learning algorithm as an independent variable. The 225 
complete phrase files were down sampled to the recommended 16kHz sample rate and 
converted to linear 16 WAV format. They were then uploaded to the speech recognition 
algorithm. In this case it was Google’s “command_and_search” model in March of 2021. 
The output was the predicted phrase spoken and a confidence percent. The predicted 
word in the phrase was then matched to the actual word spoken to determine a percent 
correct metric that would be used as an independent variable in the final regression. 

5.3.4 Linear regression 

Following the methodology shown in Figure 5-1, the first step before performing the 
regression is to remove the highly correlated independent variables (i.e. psychoacoustic 
metrics) using the correlation matrix, factor analysis (FA), and principle component 
analysis (PCA).  In summary, the difference between FA and PCA is that FA forms a 
model of theoretical latent “factors” that predict the independent variables and PCA 
reduces the independent variables to a smaller set of orthogonal “components”. Putting 
that another way, PCA assumes no other information exists that could cause variation 
within the independent variables while FA does not. Typically, both methods show 
similar results. For this effort, both were used together and both were used with the 
criteria of explaining 70% of the variation when determining the number of factors and 
components from FA and PCA, respectively. 

Once the correlation matrix was computed, the absolute value was plotted in a colormap 
(Figure 5-8). From there, a new colormap was generated with a threshold level of 0.5 
where values less than 0.5 where set to 0 and values greater than 0.5 were set to 1 (Figure 
5-9). From this colormap, the list of which variables needed to be reduced was decided. 
Putting it another way, if there was a white cell in Figure 5-9 then a decision had to be 
made on which metric to not include in the regression analysis. 

In order to help determine which correlated metric should be kept for the model, the FA 
factors and the PCA components were examined and the metric with the highest factor 
loading or component weighting was used. For example, in Figure 5-9 it is shown that 
Max THD, Avg THD, Max THDN, Avg THDN, Max S/N, Avg S/N, and Avg H2 were 
all correlated. This makes intuitive sense because they are all trying to represent the 
amount of harmonic distortion and noise. Looking at the FA loadings from these metrics 
in Table 5-3 factor “1” and  Table 5-4 component “0,” Avg THDN had the highest 
loadings/weighting at 0.94 and 0.21, respectively. If there was not a tie in the FA 
loadings, like this case, the metric with the highest value in the FA loadings was kept and 
the other correlated metrics were removed from the metric set. If there was a tie for the 
highest loading then the author would use the highest component weighting to determine 
which metric to keep. If there was a tie in both the FA loadings and PCA components the 
author would randomly select one of those two as the metric to keep and all others would 
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be removed. Completing this exercise on all of the metrics would result in a correlation 
matrix as shown in Figure 5-10, where the remaining metric set is uncorrelated and can 
be used in regression. 

 
Figure 5-8: An example correlation matrix for the phrase files (I.e. the word is X) against the 
common metrics. 
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Figure 5-9: An example showing how the threshold of 0.5 was applied to the correlation matrix in 
Figure 5-8. Any cells where there is white means that metric was correlated with another metric 
and a decision had to be made about which metric to not include moving forward. Note: The 
colormap is symmetric and could be plotted as an upper or lower triangular matrix. 
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Table 5-3: Example factor analysis loadings table for the phrase files against the common 
metrics. The blue box is highlighting the cell referenced in the text example. Note: All values less 

than 0.4 were set to 0 to make the table more readable. 
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Table 5-4: An example showing the output from PCA using the same inputs as the FA in Table 
5-3. The blue box is highlighting the cell referenced in the text example. Note: PCA only needed 

5 components (columns) to represent 70% of the total variation whereas FA needed 6 factors.  
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Figure 5-10: An example correlation matrix after the correlated metrics were removed using FA 

and PCA. 

 
In this effort both single and multiple linear regression were used. Single ordinary least 
squares linear regression was used initially to understand how each individual metric 
correlated to the dependent variable prior to FA/PCA analysis. While performing 
multiple linear regression, 14 different variations of linear regression models were tested 
(
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Table 5-5). The standard ordinary least squares (OLS) regression resulted in the highest 
correlation so was therefore used to determine the optimal set of metrics.  Nonlinear 
regression was investigated, but found to perform worse than linear so it was not used.  

To determine the optimal set of metrics from all of the non-colinear independent 
variables, all possible permutations of the metric set were regressed against the percent 
correct dependent variable and the metric set that had the lowest adjusted R2 was 
selected. Adjusted R2 is defined as, 

𝑎𝑑𝑗𝑅% = 1 −	
(1 − 𝑅%)(𝑛 − 1)

𝑛 − 𝑘 − 1 	 EQ5-4 

where R2 (%) is the coefficient of determination, n is the number of points in the data, 
and K is the number of independent variables. Adjusted R2 was used because all 
permutations were compared from k = 2 to k = total number of non-collinear independent 
variables.  
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Table 5-5: Linear models used in the study 

Regression Model Name Comments 

Ordinary Least Squares Minimize residual sum of squares 

Ridge Regression With built in leave one out cross 
validation 

SGD Regressor Minimize a regularized empirical loss 
with stochastic gradient descent 

Elastic Net Model Iterative fitting along a regularization 
path 

Lars Least angle regression 

Lasso Linear model with L1 prior as regularizer 

Lasso-Lars Lasso model fit with lars 

Orthogonal Matching Pursuit  

Bayesian ARD Regression  

Bayesian Ridge Regression  

RANSAC Regression Random sample consensus 

Theil-Sen Regressor Robust multivariate regression model 

Passive Aggressive Regressor  

Epsilon-Support Vector Regression With free parameters C and epsilon 

Partial Least Squares Transformer and regressor 

As a quality check step Variation inflation factor (VIF) analysis was performed to 
confirm no multicollinearity existed for the metrics entering regression. VIF is, 

𝑉𝐼𝐹 =
1

1 − 𝑅% EQ5-5 

where R2 is the coefficient of determination between the single metric in question and all 
other metrics in the analysis. An example is shown in Table 5-6. VIF values were 
required to be below 3, but typically were below 2. Putting the 3 requirement another 
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way, the R2 between each independent variable and all other independent variables going 
into regression had to be less than 2/3 (~0.66). 

  
Table 5-6: An example VIF analysis output. 

 

 

Once the optimal metric set was regressed, the T-Statistic p-value was computed. If the p-
value was less than 𝛼 = 0.05 that meant the independent variable was worth keeping (i.e. 
that null hypothesis that the independent variable does not correlate to the dependent 
variable could be rejected). The metric set was then further refined to only include 
metrics that had a small p-value. That metric set became the final model.  

Using the final metric set, the coefficient of determination R2 and the adjusted R2 
(EQ5-4) were computed as the final fit of the independent variables to the dependent. The 
weights for each metric were also computed. The weights could be applied in EQ5-2 
when testing future drive signal processing methods. 

5.4 Results 

5.4.1 Logistic regression 

The analysis described in section 5.3.3.3 unfortunately resulted in a low coefficient of 
determination, R2 = 0.023 (Figure 5-11). Additionally, the result seemed to predict many 
values of ~84 percent correct (i.e. the vertical line of dots in Figure 5-11). The cause of 
this was unknown. Therefore, the predicted percent correct metric was not used as an 
independent variable moving forward. 
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Figure 5-11: Scatter plot showing the lack of correlation for the computed independent variable 

“Predicted Percent Correct” to the dependent variable Percent Correct. 

5.4.2 Google speech recognizer 
The analysis described in 5.3.3.4 was initially conducted on the clean original phrase 
files. With these files, the algorithm correctly guessed the word 80% of the time. An 
example of the output is shown in Table 5-7. 
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Table 5-7: Example output from the Google speech recognition model using the clean phrase 

files. 

 

The same analysis was then performed on phrase and single word files. An example 
output is shown in Table 5-8. There were only 13 of the 225 files that even resulted in a 
predicted transcript for the phrase files. Of those 13 only two had the phrase “Please 
select the..”, but unfortunately neither of those two were correct resulting in a 0% correct 
score. Since the model input is 10ms cepstrum values, it is hypothesized that the noise in 
the signals would drastically effect the performance. Recall from Chapter 4, that the DC 
offset method (45 of 225 files) had a 97.2% correct score. So while the noise did not 
affect the jury subjects, it was too much for the speech recognition algorithm at this time. 
Therefore it was not used as an independent variable in the regression. 
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Table 5-8:  The complete output from the Google speech recognition model using the noisy 
phrase files. 

 

5.4.3 Multiple linear regression  

Initially the phrase files (i.e. the word is “X”) were processed. The analysis was done 
including THDSI metrics  and not including them (Table 5-9). From the complete 
original metric set, the common metrics were reduced to 12. The results are shown in the 
left half of Table 5-9. The R2 and adjR2 using all 12 of these metrics was 0.16 and 0.11, 
respectively. As described in section 5.3.4, all permutations of the 12 metrics were tested 
to determine the metric set (i.e. model) with the highest adjR2. This resulted in an R2 and 
adjR2 of 0.15 and 0.13, respectively for a model including max loudness, average 
cepstrum, average kurtosis, average SII, and STOI. A t-test was computed for all of these 
independent variables and the resulting p-value was used to determine if the metric 
should be kept (i.e. if there was significant correlation between the metric and the 
dependent variable). This analysis showed that average cepstrum and average kurtosis 
had to be removed. A new model was fit using max loudness, average SII, and average 
STOI. The p-values were again computed and average SII was now 0.07 which was up 
from 0.03 in the initial model. Therefore, average SII was removed and the metric set for 
the final model was determined to be max loudness and average STOI. The resulting R2 
was 0.12, the weights were -0.96 and 62.65 for max loudness and STOI, respectively. 
The intercept was 92.92.  

The same process was repeated including using the THDSI metrics and is shown on the 
right half of Table 5-9. The resulting model did not contain THDSI, but contained 
average STOI and average SII. 
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Table 5-9: Results from processing the phrase files 

 

The process was then computed for the single word files with the thought being that the 
jury study subject was only tasked with understanding the word “X” so any metric data 
computed for the beginning of the phrase “the word is…” would likely not correlate. For 
example, when max loudness was computed the loudness versus time array may have had 
a peak at a time not when the word was said. Therefore, all of the metrics were computed 
over the very short duration single word clips. The results are shown in Table 5-10. 

The common metrics, not including THDSI metrics, resulted in a final model containing 
max SII and average STOI with an R2 = 0.082. Including THDSI the resulting model had 
only average THDNSI as a metric with an R2 = 0.122. The compiled adjusted R2 values 
for all of the final models is shown in Table 5-11. The conclusion from this is that the 
best model to predict percent correct is the single word model which contains the single 
psychoacoustic metric average THDNSI.  

 

 

12 14
0.160 0.175
0.113 0.120

R^2 0.150 R^2 0.167
adjR^2 0.131 adjR^2 0.140
Metric Coefficient VIF P-Val Metric Coefficient VIF P-Val

0 Max Loudness [sones] -0.82 1.17 0.02 0 Max Loudness [sones] -0.68 1.54 0.10
1 Avg Cepstrum [dB] -211.56 1.26 0.18 1 Max Sharpness [acum] 2.96 1.63 0.25
2 Avg Kurtosis [none] 0.41 1.05 0.19 2 Avg Cepstrum [dB] -194.75 1.46 0.25
3 avgSII [%]* 136.24 1.14 0.03 3 Avg Kurtosis [none] 0.45 1.05 0.14
4 avgSTOI [%] 62.79 1.21 0.00 4 avgSII [%] 131.2 1.17 0.04
5 Intercept 10.69 NaN 0.82 5 avgSTOI [%] 61.06 1.23 0.00

6 minTHDNSI [%] 0 1.11 0.07
r^2 0.121 7 Intercept -17.53 NaN 0.73

adjR^2 0.113
Metric Coefficient P-Val r^2 0.107

0 Max Loudness [sones] -0.96 0.01 adjR^2 0.099
1 avgSTOI [%] 62.65 0.00 Metric Coefficient P-Val
2 Intercept 92.92 0.00 0 avgSII [%] 129.41 0.04

1 avgSTOI [%] 64.34 0.00
2 Intercept -47.04 0.24

*Not included even thought p-val<0.03 because it would have a p-val = 0.072 when regressed with only Max Loudness and avgSTOI

Phrase - "The word is X"

Number of Noncolinear
R^2

adjR^2

Model with highest AdjR^2

Model with just p-vals < 0.05

Model with highest AdjR^2

Model with just p-vals < 0.05

Common Metrics Only Common Metrics + THDSI

Number of Noncolinear
R^2

adjR^2
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Table 5-10: Results from processing the single word files. 

 

 
Table 5-11: Comparison between the different file lengths showing the best performing model 

was the single word model that included average THDNSI. 

 

The resulting best fit model equation is 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = −0.000409 ∗ 𝑎𝑣𝑔𝑇𝐻𝐷𝑁𝑆𝐼 + 95.85	 EQ 5-6 

where the Estimated Percent Correct is the model’s prediction of the percent correct and 
avgTHDNSI is the computed average THDNSI (%) over the duration of only the single 
word (i.e. not the whole phrase). The resulting fit from this model is shown in Figure 
5-12. 

While the final coefficient of determination is low, there are many aspects of the final 
model that make intuitive sense. For example, the slope of the model line (Figure 5-12) is 
negative. This means that as THDNSI increases, the estimated percent correct decreases, 
which follows intuition. Additionally, the y intercept is 95.85 which is close to 100%. It 
follows intuition that the model would have a y intercept of near 100% meaning that 
when the model is input 0% THDNSI the estimated percent correct should be near 100%. 

9 11
0.107 0.179
0.695 0.136

R^2 0.100 R^2 0.177
adjR^2 0.080 adjR^2 0.155
Metric Coefficient VIF P-Val Metric Coefficient VIF P-Val

0 Avg L5 [dBA] -0.37 1.14 0.28 0 Max H2 [dB] 0.61 1.02 0.25
1 maxSII [%] 455.04 1.05 0.047 1 maxSII [%] 355.30 1.03 0.10
2 avgSII [%] 56.09 1.13 0.10 2 avgSTOI [%] 23.41 1.14 0.01
3 avgSTOI [%] 36.56 1.05 0.00 3 avgSTI [%] -19.50 1.03 0.09
4 avgSTI [%] -13.41 1.02 0.26 4 minTHDSI [%] 0.02 1.21 0.09
5 Intercept -355.66 NaN 0.09 5 avgTHDNSI [%] -4.02E-04 1.33 0.00

6 Intercept -228.10 NaN 0.25
r^2 0.082 Model with just p-vals < 0.05
adjR^2 0.073 r^2 0.122
Metric Coefficient P-Val adjR^2 0.118

0 maxSII [%] 545.57 0.03 Metric Coefficient P-Val
1 avgSTOI [%] 33.87 0.02 0 avgTHDNSI [%] -4.09E-04 0.00
2 Intercept -437.01 0.00 1 Intercept 95.85 0.00

Model with just p-vals < 0.05

R^2 R^2
adjR^2 adjR^2

Model with highest AdjR^2 Model with highest AdjR^2

Single Word- "X"
Common Metrics Only Common Metrics + THDSI

Number of Noncolinear Number of Noncolinear

Phrase AdjR^2 Single Word AdjR^2
No THDSI 0.113 No THDSI 0.073
THDSI 0.099 THDSI 0.118
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Figure 5-12: Demonstration of the final model fit over the jury study data. 

5.5 Conclusions 

In conclusion, a correlation between the subjective results of the jury study in Chapter 4 
and a variety of psychoacoustic metrics was undertaken.  The psychoacoustic metrics 
included common sound quality metrics like loudness, but also included a new custom 
metric titled Total Harmonic Distortion for Speech Intelligibility THDSI. Additionally, 
unique novel metrics like developing logistic regression models for each jury study 
subject and using modern speech recognition algorithms were investigated. 
Unfortunately, all of this effort only led to a model with a coefficient of determination 
(R2) of 0.122. With jury studies it can be difficult to get correlation and that was 
definitely the case in this effort. Moving forward, alternative machine learning algorithms 
could be utilized to help provide additional independent variables to investigate. 
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6 Conclusions and recommended future work 

6.1 Conclusions 

In order to determine if a new technology is applicable for any given application it 
requires certain knowledge about that technology. For example, one can’t determine if 
the hammer will work for nailing without knowing if the hammer is too heavy to lift. 
Whenever a new technology is discovered a myriad of questions arise about it. The 
development for CNT loudspeakers is no different.  

A lot has changed in the community’s understanding of carbon nanotube loudspeakers 
since the start of this effort in fall of 2014. In addition to the results presented in this 
document, significant improvements have been made by others in the durability [71], 
modeling [12], [40]–[47], and application spaces for these transducers [30]–[36]. The 
main contributions of this document were quantification of the true efficiency for various 
signal processing methods, discovery of new signal processing methods that can be used 
with class D amplifiers, and subjective data outlining which signal processing methods 
are the most intelligible. 

Combing the results from Chapters 2 & 3, a summary of the efficiency and THD findings 
are presented in Table 6-1. From this data the main conclusion that can be made is that 
regardless of drive signal processing method, the efficiency is on the same order of 
magnitude (i.e. no drive signal method significantly increases the efficiency). This 
efficiency follows the analytic prediction for an open CNT thermophone (Figure 2-5) 
Putting it another way, for an open CNT loudspeaker, the efficiency will always be on the 
E-6% efficiency order of magnitude (frequencies < 300Hz). This is drastically different 
than the ~E-2% efficiency of a moving coil loudspeaker (Table 2-3), which is roughly 
four orders of magnitude more efficient.  

While these transducers are, by their physical nature, less efficient that does not mean 
their efficiency cannot be improved. For example, tuning the resonance of a CNT 
loudspeaker in an enclosure would cause that system to have a higher output than an open 
CNT loudspeaker therefore improving the efficiency.  

It is also interesting to note from Table 6-1 that the THD of the FCAC (aka SED) method 
is significantly lower than the other methods, but as mentioned in Chapter 3 this is largely 
due to that method, as well as TCAC, being able to be optimized for single sine wave 
signals and not working well on complex signals. With that knowledge it was not 
surprising to then see SED be one of the worst performers in the jury study in Chapter 4. 
Aside from CntUP, DC offset had the highest THDs in Chapter 3, but performed the best 
in the jury study in Chapter 4. This suggests that THD is not a great metric to track sound 
quality for CNT drive signals for stationary signals. For the transient signals in Chapter 5, 
a similar conclusion was made that THD was not the ideal psychoacoustic metric which 
led to the development of THDSI as a better, but still not perfect, metric. 
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One important conclusion from the efficiency work is that there are multiple different 
drive signal processing methods that work to linearize the thermoacoustic frequency 
doubling. Each of these methods allow for use with different amplification hardware. 
CntUP/SED/TCAC can all be used with class D amplifiers. AM can be used with some 
class D amplifiers as well as radio frequency amplifiers, and DC can be used with class 
A/B amplifiers. 

One surprising conclusion from the efficiency effort was that efficiency was not a 
function of carrier frequency (Figure 2-10). This was largely surprising because 
according to the analytical model [13] efficiency should increase with frequency. 
Therefore, if a higher carrier frequency is used the higher the efficiency was expected to 
be. This did not turn out to be the case. Other important conclusions were that the optimal 
B/A ratio for DC offset was 0.62 (Figure 2-7) and the optimal modulation index for AM 
was 1.5 (Figure 2-11). 

 
Table 6-1: Summary of efficiency and THD results from Chapters 2 & 3. All data was for input 
power of ~72 Wrms  

 Efficiency (µ%) THD (%) 

AC/CntUP 4.3 - 319 » ¥ 

DCAC/DC 
(B/A=0.62) 1.69 - 308 43 - 93 

AMAC/AM 1.24 - 228 22 – 95 

FCAC/SED 1.01 - 1083 0.68 - 59 

TCAC 1.26 - 388 1.7 - 11 

Summarizing the results from the jury study in Chapter 4, DC offset was the most 
intelligible drive signal processing method followed by amplitude modulation (AM) 
(Table 4-2). Additionally, it was found that executing a jury study outside the lab by way 
of a drive up jury study can lead to statistically significant results without the health risk 
of bringing tens of subjects into the lab during a pandemic. 

Recalling the findings from the psychoacoustic metric correlation in Chapter 5, the main 
conclusion reached was that there are not any combination or common psychoacoustic 
metrics that correlated well to the jury study results in Chapter 4. A new metric, Total 
Harmonic Distortion for Speech Intelligibility (THDSI) was developed, but only resulted 
in a coefficient of determination (R2) equal to 0.12. That model is shown in EQ 5-6. 
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6.2 Future work 

6.2.1 Efficiency 

Looking back at what has been done in regards to efficiency, there are two main areas to 
focus on moving forward. The first is a new method that was published by Torraca et al. 
[109]. The new method, adaptive predistortion (AP), uses a sliding FIFO buffer of 
historical data to compute a dynamic DC offset. It then adds that DC offset to the signal 
and modulates the summation at the nyquist. This allows for a drive signal processing 
method that can be used on a class D amplifier. In subjective testing in the lab, the sound 
quality was vastly superior to TCAC and FCAC (aka SED). Interestingly, the authors 
claim this method to also be significantly more efficient than other methods. However, 
they only use SPL measurements to confirm this and they also don’t acquire data at 
frequencies up to the nyquist (i.e. where the modulation occurs). So this method should 
be investigated as the others were done in Chapters 2 & 3. 

The second area to focus on is enclosure design. Different application opportunities are 
pushing this development, but at this time it is just that, application specific. A much 
broader study of enclosure efficiency should be undertaken so that the applications can 
start their designs based on what is learn from the optimal enclosure effort. 

6.2.2 Drive signal processing 

At this point, especially with the addition of AP as described in 6.2.1, there is not a 
significant need for drive signal development. Gains in the efficiency and durability 
arenas warrant more attention. 

6.2.3 Sound quality 

The intelligibility results of the jury study in Chapter 4 were a big step forward in 
discerning which drive signal processing method was most intelligible. Unfortunately, the 
resulting psychoacoustic metric correlation in Chapter 5 did not leave much promise that 
any future metrics, like AP, could be compared without executing a new jury study. 
Therefore, it is suggested that additional machine learning algorithms be tested to 
determine if a new model (i.e. independent variable) can be found that better correlates to 
the jury study results. 

The main difficulty with developing modern machine learning algorithms is determining 
what data to feed it. Preliminary investigations show Convolutional Neural Network 
(CNN) models seem to perform the best for audio file correlation. Unfortunately it is not 
as easy as inputting the wav files into the models. While that can be done, the results are 
not as correlated as when meta data are used [110]. Audio recognition models (e.g. 
models that estimate genre) seem to be typically fed short time Fourier transform (aka 
spectrogram) data with varying construction of the various layers within the CNN. It is 
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recommended to look into these methods, possibly feeding the model other metrics like 
THDSI and the others that showed some correlation in Chapter 5. 

6.3 Recommendation applications 

After spending nearly six and a half years with the CNT technology, I believe it is 
unlikely that CNT loudspeakers will become more popular than traditional moving coil 
loudspeakers primarily due to their inefficiency. The ideal application for CNT 
loudspeakers are applications that require low weight, small size, or custom directivity 
and have access to ample power. 
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4E75E CON6EN6 DE6AáL5

CCC RGRWbNKcaVKQP TGTOU aPd CQPdKVKQPU

1. DGUETKRVKQP QH 5GTXKEG; DGÕPGF 6GTOU. 6JKU 4GRWDNKECVKQP LKEGPUG GPCDNGU VJG 7UGT VQ QDVCKP NKEGPUGU HQT
TGRWDNKECVKQP QH QPG QT OQTG EQR[TKIJVGF YQTMU CU FGUETKDGF KP FGVCKN QP VJG TGNGXCPV OTFGT CQPÕTOCVKQP (VJG
"9QTM(U)"). CQR[TKIJV CNGCTCPEG CGPVGT, áPE. ("CCC") ITCPVU NKEGPUGU VJTQWIJ VJG 5GTXKEG QP DGJCNH QH VJG
TKIJVUJQNFGT KFGPVKÕGF QP VJG OTFGT CQPÕTOCVKQP (VJG "4KIJVUJQNFGT"). "4GRWDNKECVKQP", CU WUGF JGTGKP, IGPGTCNN[
OGCPU VJG KPENWUKQP QH C 9QTM, KP YJQNG QT KP RCTV, KP C PGY YQTM QT YQTMU, CNUQ CU FGUETKDGF QP VJG OTFGT
CQPÕTOCVKQP. "7UGT", CU WUGF JGTGKP, OGCPU VJG RGTUQP QT GPVKV[ OCMKPI UWEJ TGRWDNKECVKQP.

2. 6JG VGTOU UGV HQTVJ KP VJG TGNGXCPV OTFGT CQPÕTOCVKQP, CPF CP[ VGTOU UGV D[ VJG 4KIJVUJQNFGT YKVJ TGURGEV VQ C
RCTVKEWNCT 9QTM, IQXGTP VJG VGTOU QH WUG QH 9QTMU KP EQPPGEVKQP YKVJ VJG 5GTXKEG. B[ WUKPI VJG 5GTXKEG, VJG RGTUQP
VTCPUCEVKPI HQT C TGRWDNKECVKQP NKEGPUG QP DGJCNH QH VJG 7UGT TGRTGUGPVU CPF YCTTCPVU VJCV JG/UJG/KV (C) JCU DGGP
FWN[ CWVJQTK\GF D[ VJG 7UGT VQ CEEGRV, CPF JGTGD[ FQGU CEEGRV, CNN UWEJ VGTOU CPF EQPFKVKQPU QP DGJCNH QH 7UGT,
CPF (D) UJCNN KPHQTO 7UGT QH CNN UWEJ VGTOU CPF EQPFKVKQPU. áP VJG GXGPV UWEJ RGTUQP KU C "HTGGNCPEGT" QT QVJGT VJKTF
RCTV[ KPFGRGPFGPV QH 7UGT CPF CCC, UWEJ RCTV[ UJCNN DG FGGOGF LQKPVN[ C "7UGT" HQT RWTRQUGU QH VJGUG VGTOU CPF
EQPFKVKQPU. áP CP[ GXGPV, 7UGT UJCNN DG FGGOGF VQ JCXG CEEGRVGF CPF CITGGF VQ CNN UWEJ VGTOU CPF EQPFKVKQPU KH
7UGT TGRWDNKUJGU VJG 9QTM KP CP[ HCUJKQP.

3. 5EQRG QH LKEGPUG; LKOKVCVKQPU CPF ODNKICVKQPU.

3.1. ANN 9QTMU CPF CNN TKIJVU VJGTGKP, KPENWFKPI EQR[TKIJV TKIJVU, TGOCKP VJG UQNG CPF GZENWUKXG RTQRGTV[ QH VJG
4KIJVUJQNFGT. 6JG NKEGPUG ETGCVGF D[ VJG GZEJCPIG QH CP OTFGT CQPÕTOCVKQP (CPF/QT CP[ KPXQKEG) CPF
RC[OGPV D[ 7UGT QH VJG HWNN COQWPV UGV HQTVJ QP VJCV FQEWOGPV KPENWFGU QPN[ VJQUG TKIJVU GZRTGUUN[ UGV
HQTVJ KP VJG OTFGT CQPÕTOCVKQP CPF KP VJGUG VGTOU CPF EQPFKVKQPU, CPF EQPXG[U PQ QVJGT TKIJVU KP VJG
9QTM(U) VQ 7UGT. ANN TKIJVU PQV GZRTGUUN[ ITCPVGF CTG JGTGD[ TGUGTXGF.

3.2.
GGPGTCN PC[OGPV 6GTOU: ;QW OC[ RC[ D[ ETGFKV ECTF QT VJTQWIJ CP CEEQWPV YKVJ WU RC[CDNG CV VJG GPF QH
VJG OQPVJ. áH [QW CPF YG CITGG VJCV [QW OC[ GUVCDNKUJ C UVCPFKPI CEEQWPV YKVJ CCC, VJGP VJG HQNNQYKPI
VGTOU CRRN[: 4GOKV PC[OGPV VQ: CQR[TKIJV CNGCTCPEG CGPVGT, 29118 NGVYQTM PNCEG, CJKECIQ, áL 60673-1291.
PC[OGPVU DWG: áPXQKEGU CTG RC[CDNG WRQP VJGKT FGNKXGT[ VQ [QW (QT WRQP QWT PQVKEG VQ [QW VJCV VJG[ CTG
CXCKNCDNG VQ [QW HQT FQYPNQCFKPI). AHVGT 30 FC[U, QWVUVCPFKPI COQWPVU YKNN DG UWDLGEV VQ C UGTXKEG EJCTIG
QH 1-1/2% RGT OQPVJ QT, KH NGUU, VJG OCZKOWO TCVG CNNQYGF D[ CRRNKECDNG NCY. 7PNGUU QVJGTYKUG URGEKÕECNN[
UGV HQTVJ KP VJG OTFGT CQPÕTOCVKQP QT KP C UGRCTCVG YTKVVGP CITGGOGPV UKIPGF D[ CCC, KPXQKEGU CTG FWG
CPF RC[CDNG QP "PGV 30" VGTOU. 9JKNG 7UGT OC[ GZGTEKUG VJG TKIJVU NKEGPUGF KOOGFKCVGN[ WRQP KUUWCPEG QH
VJG OTFGT CQPÕTOCVKQP, VJG NKEGPUG KU CWVQOCVKECNN[ TGXQMGF CPF KU PWNN CPF XQKF, CU KH KV JCF PGXGT DGGP

TJG TGSWGUVKPI RGTUQP /
QTIaPK\aVKQP VQ aRRGaT
QP VJG NKcGPUG

6TQ[ BQWOCP / MKEJKICP
6GEJPQNQIKECN 7PKXGTUKV[

TKVNG, dGUcTKRVKQP QT
PWOGTKc TGHGTGPcG QH VJG
RQTVKQP(U)

CQPVKPWGF DTKXG 5KIPCN
DGXGNQROGPV HQT VJG
CCTDQP NCPQVWDG
6JGTOQCEQWUVKE
LQWFURGCMGT 7UKPI
6GEJPKSWGU DGTKXGF HTQO
VJG HGCTKPI AKF áPFWUVT[

EdKVQT QH RQTVKQP(U) N/A

VQNWOG QH UGTKaN QT
OQPQITaRJ

N/A

PaIG QT RaIG TaPIG QH
RQTVKQP

1-7

TKVNG QH VJG
aTVKcNG/cJaRVGT VJG
RQTVKQP KU HTQO

N/A

AWVJQT QH RQTVKQP(U) BQWOCP, 6TQ[

áUUWG, KH TGRWbNKUJKPI aP
aTVKcNG HTQO a UGTKaN

2017-01-1895

PWbNKcaVKQP daVG QH
RQTVKQP

2017-06-05
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KUUWGF, KH EQORNGVG RC[OGPV HQT VJG NKEGPUG KU PQV TGEGKXGF QP C VKOGN[ DCUKU GKVJGT HTQO 7UGT FKTGEVN[ QT
VJTQWIJ C RC[OGPV CIGPV, UWEJ CU C ETGFKV ECTF EQORCP[.

3.3. 7PNGUU QVJGTYKUG RTQXKFGF KP VJG OTFGT CQPÕTOCVKQP, CP[ ITCPV QH TKIJVU VQ 7UGT (K) KU "QPG-VKOG" (KPENWFKPI
VJG GFKVKQPU CPF RTQFWEV HCOKN[ URGEKÕGF KP VJG NKEGPUG), (KK) KU PQP-GZENWUKXG CPF PQP-VTCPUHGTCDNG CPF (KKK)
KU UWDLGEV VQ CP[ CPF CNN NKOKVCVKQPU CPF TGUVTKEVKQPU (UWEJ CU, DWV PQV NKOKVGF VQ, NKOKVCVKQPU QP FWTCVKQP QH
WUG QT EKTEWNCVKQP) KPENWFGF KP VJG OTFGT CQPÕTOCVKQP QT KPXQKEG CPF/QT KP VJGUG VGTOU CPF EQPFKVKQPU.
7RQP EQORNGVKQP QH VJG NKEGPUGF WUG, 7UGT UJCNN GKVJGT UGEWTG C PGY RGTOKUUKQP HQT HWTVJGT WUG QH VJG
9QTM(U) QT KOOGFKCVGN[ EGCUG CP[ PGY WUG QH VJG 9QTM(U) CPF UJCNN TGPFGT KPCEEGUUKDNG (UWEJ CU D[
FGNGVKPI QT D[ TGOQXKPI QT UGXGTKPI NKPMU QT QVJGT NQECVQTU) CP[ HWTVJGT EQRKGU QH VJG 9QTM (GZEGRV HQT
EQRKGU RTKPVGF QP RCRGT KP CEEQTFCPEG YKVJ VJKU NKEGPUG CPF UVKNN KP 7UGT'U UVQEM CV VJG GPF QH UWEJ RGTKQF).

3.4. áP VJG GXGPV VJCV VJG OCVGTKCN HQT YJKEJ C TGRWDNKECVKQP NKEGPUG KU UQWIJV KPENWFGU VJKTF RCTV[ OCVGTKCNU
(UWEJ CU RJQVQITCRJU, KNNWUVTCVKQPU, ITCRJU, KPUGTVU CPF UKOKNCT OCVGTKCNU) YJKEJ CTG KFGPVKÕGF KP UWEJ
OCVGTKCN CU JCXKPI DGGP WUGF D[ RGTOKUUKQP, 7UGT KU TGURQPUKDNG HQT KFGPVKH[KPI, CPF UGGMKPI UGRCTCVG
NKEGPUGU (WPFGT VJKU SGTXKEG QT QVJGTYKUG) HQT, CP[ QH UWEJ VJKTF RCTV[ OCVGTKCNU; YKVJQWV C UGRCTCVG NKEGPUG,
UWEJ VJKTF RCTV[ OCVGTKCNU OC[ PQV DG WUGF.

3.5. 7UG QH RTQRGT EQR[TKIJV PQVKEG HQT C 9QTM KU TGSWKTGF CU C EQPFKVKQP QH CP[ NKEGPUG ITCPVGF WPFGT VJG
SGTXKEG. 7PNGUU QVJGTYKUG RTQXKFGF KP VJG OTFGT CQPÕTOCVKQP, C RTQRGT EQR[TKIJV PQVKEG YKNN TGCF
UWDUVCPVKCNN[ CU HQNNQYU: "RGRWDNKUJGF YKVJ RGTOKUUKQP QH =RKIJVUJQNFGT'U PCOG?, HTQO =9QTM'U VKVNG, CWVJQT,
XQNWOG, GFKVKQP PWODGT CPF [GCT QH EQR[TKIJV?; RGTOKUUKQP EQPXG[GF VJTQWIJ CQR[TKIJV CNGCTCPEG CGPVGT,
áPE. " SWEJ PQVKEG OWUV DG RTQXKFGF KP C TGCUQPCDN[ NGIKDNG HQPV UK\G CPF OWUV DG RNCEGF GKVJGT
KOOGFKCVGN[ CFLCEGPV VQ VJG 9QTM CU WUGF (HQT GZCORNG, CU RCTV QH C D[-NKPG QT HQQVPQVG DWV PQV CU C
UGRCTCVG GNGEVTQPKE NKPM) QT KP VJG RNCEG YJGTG UWDUVCPVKCNN[ CNN QVJGT ETGFKVU QT PQVKEGU HQT VJG PGY YQTM
EQPVCKPKPI VJG TGRWDNKUJGF 9QTM CTG NQECVGF. FCKNWTG VQ KPENWFG VJG TGSWKTGF PQVKEG TGUWNVU KP NQUU VQ VJG
RKIJVUJQNFGT CPF CCC, CPF VJG 7UGT UJCNN DG NKCDNG VQ RC[ NKSWKFCVGF FCOCIGU HQT GCEJ UWEJ HCKNWTG GSWCN
VQ VYKEG VJG WUG HGG URGEKÕGF KP VJG OTFGT CQPÕTOCVKQP, KP CFFKVKQP VQ VJG WUG HGG KVUGNH CPF CP[ QVJGT HGGU
CPF EJCTIGU URGEKÕGF.

3.6. 7UGT OC[ QPN[ OCMG CNVGTCVKQPU VQ VJG 9QTM KH CPF CU GZRTGUUN[ UGV HQTVJ KP VJG OTFGT CQPÕTOCVKQP. NQ
9QTM OC[ DG WUGF KP CP[ YC[ VJCV KU FGHCOCVQT[, XKQNCVGU VJG TKIJVU QH VJKTF RCTVKGU (KPENWFKPI UWEJ VJKTF
RCTVKGU' TKIJVU QH EQR[TKIJV, RTKXCE[, RWDNKEKV[, QT QVJGT VCPIKDNG QT KPVCPIKDNG RTQRGTV[), QT KU QVJGTYKUG
KNNGICN, UGZWCNN[ GZRNKEKV QT QDUEGPG. áP CFFKVKQP, 7UGT OC[ PQV EQPLQKP C 9QTM YKVJ CP[ QVJGT OCVGTKCN VJCV
OC[ TGUWNV KP FCOCIG VQ VJG TGRWVCVKQP QH VJG RKIJVUJQNFGT. 7UGT CITGGU VQ KPHQTO CCC KH KV DGEQOGU CYCTG
QH CP[ KPHTKPIGOGPV QH CP[ TKIJVU KP C 9QTM CPF VQ EQQRGTCVG YKVJ CP[ TGCUQPCDNG TGSWGUV QH CCC QT VJG
RKIJVUJQNFGT KP EQPPGEVKQP VJGTGYKVJ.

4. áPFGOPKV[. 7UGT JGTGD[ KPFGOPKÕGU CPF CITGGU VQ FGHGPF VJG RKIJVUJQNFGT CPF CCC, CPF VJGKT TGURGEVKXG
GORNQ[GGU CPF FKTGEVQTU, CICKPUV CNN ENCKOU, NKCDKNKV[, FCOCIGU, EQUVU CPF GZRGPUGU, KPENWFKPI NGICN HGGU CPF
GZRGPUGU, CTKUKPI QWV QH CP[ WUG QH C 9QTM DG[QPF VJG UEQRG QH VJG TKIJVU ITCPVGF JGTGKP, QT CP[ WUG QH C 9QTM
YJKEJ JCU DGGP CNVGTGF KP CP[ WPCWVJQTK\GF YC[ D[ 7UGT, KPENWFKPI ENCKOU QH FGHCOCVKQP QT KPHTKPIGOGPV QH TKIJVU
QH EQR[TKIJV, RWDNKEKV[, RTKXCE[ QT QVJGT VCPIKDNG QT KPVCPIKDNG RTQRGTV[.

5. LKOKVCVKQP QH LKCDKNKV[. 7NDER NO CáRC7MS6ANCES 9áLL CCC OR 6HE RáGH6SHOLDER BE LáABLE FOR AN; DáREC6,
áNDáREC6, CONSEQ7EN6áAL OR áNCáDEN6AL DAMAGES (áNCL7DáNG 9á6HO76 LáMá6A6áON DAMAGES FOR LOSS OF
B7SáNESS PROFá6S OR áNFORMA6áON, OR FOR B7SáNESS áN6ERR7P6áON) ARáSáNG O76 OF 6HE 7SE OR áNABáLá6;
6O 7SE A 9ORK, E8EN áF ONE OF 6HEM HAS BEEN AD8áSED OF 6HE POSSáBáLá6; OF S7CH DAMAGES. áP CP[ GXGPV,
VJG VQVCN NKCDKNKV[ QH VJG RKIJVUJQNFGT CPF CCC (KPENWFKPI VJGKT TGURGEVKXG GORNQ[GGU CPF FKTGEVQTU) UJCNN PQV GZEGGF
VJG VQVCN COQWPV CEVWCNN[ RCKF D[ 7UGT HQT VJKU NKEGPUG. 7UGT CUUWOGU HWNN NKCDKNKV[ HQT VJG CEVKQPU CPF QOKUUKQPU QH
KVU RTKPEKRCNU, GORNQ[GGU, CIGPVU, CÞNKCVGU, UWEEGUUQTU CPF CUUKIPU.

6.
LKOKVGF 9CTTCPVKGU. 6HE 9ORK(S) AND RáGH6(S) ARE PRO8áDED "AS áS". CCC HAS 6HE RáGH6 6O GRAN6 6O 7SER
6HE RáGH6S GRAN6ED áN 6HE ORDER CONFáRMA6áON DOC7MEN6. CCC AND 6HE RáGH6SHOLDER DáSCLAáM ALL
O6HER 9ARRAN6áES RELA6áNG 6O 6HE 9ORK(S) AND RáGH6(S), Eá6HER E:PRESS OR áMPLáED, áNCL7DáNG
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9á6H176 LáMá6A6á1N áM2LáED 9A44AN6áE5 1F ME4CHAN6ABáLá6; 14 Fá6NE55 F14 A 2A46áC7LA4 274215E.
ADDá6á1NAL 4áGH65 MA; BE 4E37á4ED 61 75E áLL7564A6á1N5, G4A2H5, 2H161G4A2H5, AB564AC65, áN5E465
14 16HE4 2146á1N5 1F 6HE 914K (A5 12215ED 61 6HE EN6á4E 914K) áN A MANNE4 C1N6EM2LA6ED B; 75E4;
75E4 7NDE456AND5 AND AG4EE5 6HA6 NEá6HE4 CCC N14 6HE 4áGH65H1LDE4 MA; HA8E 57CH ADDá6á1NAL
4áGH65 61 G4AN6.

7. EàGEV QH BTGCEJ. AP[ HCKNWTG D[ 7UGT VQ RC[ CP[ COQWPV YJGP FWG, QT CP[ WUG D[ 7UGT QH C 9QTM DG[QPF VJG UEQRG
QH VJG NKEGPUG UGV HQTVJ KP VJG 1TFGT CQPÕTOCVKQP CPF/QT VJGUG VGTOU CPF EQPFKVKQPU, UJCNN DG C OCVGTKCN DTGCEJ QH
VJG NKEGPUG ETGCVGF D[ VJG 1TFGT CQPÕTOCVKQP CPF VJGUG VGTOU CPF EQPFKVKQPU. AP[ DTGCEJ PQV EWTGF YKVJKP 30
FC[U QH YTKVVGP PQVKEG VJGTGQH UJCNN TGUWNV KP KOOGFKCVG VGTOKPCVKQP QH UWEJ NKEGPUG YKVJQWV HWTVJGT PQVKEG. AP[
WPCWVJQTK\GF (DWV NKEGPUCDNG) WUG QH C 9QTM VJCV KU VGTOKPCVGF KOOGFKCVGN[ WRQP PQVKEG VJGTGQH OC[ DG NKSWKFCVGF
D[ RC[OGPV QH VJG 4KIJVUJQNFGT'U QTFKPCT[ NKEGPUG RTKEG VJGTGHQT; CP[ WPCWVJQTK\GF (CPF WPNKEGPUCDNG) WUG VJCV KU
PQV VGTOKPCVGF KOOGFKCVGN[ HQT CP[ TGCUQP (KPENWFKPI, HQT GZCORNG, DGECWUG OCVGTKCNU EQPVCKPKPI VJG 9QTM ECPPQV
TGCUQPCDN[ DG TGECNNGF) YKNN DG UWDLGEV VQ CNN TGOGFKGU CXCKNCDNG CV NCY QT KP GSWKV[, DWV KP PQ GXGPV VQ C RC[OGPV QH
NGUU VJCP VJTGG VKOGU VJG 4KIJVUJQNFGT'U QTFKPCT[ NKEGPUG RTKEG HQT VJG OQUV ENQUGN[ CPCNQIQWU NKEGPUCDNG WUG RNWU
4KIJVUJQNFGT'U CPF/QT CCC'U EQUVU CPF GZRGPUGU KPEWTTGF KP EQNNGEVKPI UWEJ RC[OGPV.

8. MKUEGNNCPGQWU.

8.1. 7UGT CEMPQYNGFIGU VJCV CCC OC[, HTQO VKOG VQ VKOG, OCMG EJCPIGU QT CFFKVKQPU VQ VJG 5GTXKEG QT VQ VJGUG
VGTOU CPF EQPFKVKQPU, CPF CCC TGUGTXGU VJG TKIJV VQ UGPF PQVKEG VQ VJG 7UGT D[ GNGEVTQPKE OCKN QT
QVJGTYKUG HQT VJG RWTRQUGU QH PQVKH[KPI 7UGT QH UWEJ EJCPIGU QT CFFKVKQPU; RTQXKFGF VJCV CP[ UWEJ EJCPIGU
QT CFFKVKQPU UJCNN PQV CRRN[ VQ RGTOKUUKQPU CNTGCF[ UGEWTGF CPF RCKF HQT.

8.2. 7UG QH 7UGT-TGNCVGF KPHQTOCVKQP EQNNGEVGF VJTQWIJ VJG 5GTXKEG KU IQXGTPGF D[ CCC'U RTKXCE[ RQNKE[,
CXCKNCDNG QPNKPG JGTG:JVVRU://OCTMGVRNCEG.EQR[TKIJV.EQO/TU-WK-YGD/OR/RTKXCE[-RQNKE[

8.3. 6JG NKEGPUKPI VTCPUCEVKQP FGUETKDGF KP VJG 1TFGT CQPÕTOCVKQP KU RGTUQPCN VQ 7UGT. 6JGTGHQTG, 7UGT OC[
PQV CUUKIP QT VTCPUHGT VQ CP[ QVJGT RGTUQP (YJGVJGT C PCVWTCN RGTUQP QT CP QTICPK\CVKQP QH CP[ MKPF) VJG
NKEGPUG ETGCVGF D[ VJG 1TFGT CQPÕTOCVKQP CPF VJGUG VGTOU CPF EQPFKVKQPU QT CP[ TKIJVU ITCPVGF
JGTGWPFGT; RTQXKFGF, JQYGXGT, VJCV 7UGT OC[ CUUKIP UWEJ NKEGPUG KP KVU GPVKTGV[ QP YTKVVGP PQVKEG VQ CCC KP
VJG GXGPV QH C VTCPUHGT QH CNN QT UWDUVCPVKCNN[ CNN QH 7UGT'U TKIJVU KP VJG PGY OCVGTKCN YJKEJ KPENWFGU VJG
9QTM(U) NKEGPUGF WPFGT VJKU 5GTXKEG.

8.4. NQ COGPFOGPV QT YCKXGT QH CP[ VGTOU KU DKPFKPI WPNGUU UGV HQTVJ KP YTKVKPI CPF UKIPGF D[ VJG RCTVKGU. 6JG
4KIJVUJQNFGT CPF CCC JGTGD[ QDLGEV VQ CP[ VGTOU EQPVCKPGF KP CP[ YTKVKPI RTGRCTGF D[ VJG 7UGT QT KVU
RTKPEKRCNU, GORNQ[GGU, CIGPVU QT CÞNKCVGU CPF RWTRQTVKPI VQ IQXGTP QT QVJGTYKUG TGNCVG VQ VJG NKEGPUKPI
VTCPUCEVKQP FGUETKDGF KP VJG 1TFGT CQPÕTOCVKQP, YJKEJ VGTOU CTG KP CP[ YC[ KPEQPUKUVGPV YKVJ CP[ VGTOU
UGV HQTVJ KP VJG 1TFGT CQPÕTOCVKQP CPF/QT KP VJGUG VGTOU CPF EQPFKVKQPU QT CCC'U UVCPFCTF QRGTCVKPI
RTQEGFWTGU, YJGVJGT UWEJ YTKVKPI KU RTGRCTGF RTKQT VQ, UKOWNVCPGQWUN[ YKVJ QT UWDUGSWGPV VQ VJG 1TFGT
CQPÕTOCVKQP, CPF YJGVJGT UWEJ YTKVKPI CRRGCTU QP C EQR[ QH VJG 1TFGT CQPÕTOCVKQP QT KP C UGRCTCVG
KPUVTWOGPV.

8.5. 6JG NKEGPUKPI VTCPUCEVKQP FGUETKDGF KP VJG 1TFGT CQPÕTOCVKQP FQEWOGPV UJCNN DG IQXGTPGF D[ CPF
EQPUVTWGF WPFGT VJG NCY QH VJG 5VCVG QH NGY ;QTM, 75A, YKVJQWV TGICTF VQ VJG RTKPEKRNGU VJGTGQH QH EQPÖKEVU
QH NCY. AP[ ECUG, EQPVTQXGTU[, UWKV, CEVKQP, QT RTQEGGFKPI CTKUKPI QWV QH, KP EQPPGEVKQP YKVJ, QT TGNCVGF VQ
UWEJ NKEGPUKPI VTCPUCEVKQP UJCNN DG DTQWIJV, CV CCC'U UQNG FKUETGVKQP, KP CP[ HGFGTCN QT UVCVG EQWTV NQECVGF KP
VJG CQWPV[ QH NGY ;QTM, 5VCVG QH NGY ;QTM, 75A, QT KP CP[ HGFGTCN QT UVCVG EQWTV YJQUG IGQITCRJKECN
LWTKUFKEVKQP EQXGTU VJG NQECVKQP QH VJG 4KIJVUJQNFGT UGV HQTVJ KP VJG 1TFGT CQPÕTOCVKQP. 6JG RCTVKGU
GZRTGUUN[ UWDOKV VQ VJG RGTUQPCN LWTKUFKEVKQP CPF XGPWG QH GCEJ UWEJ HGFGTCN QT UVCVG EQWTV.áH [QW JCXG CP[
EQOOGPVU QT SWGUVKQPU CDQWV VJG 5GTXKEG QT CQR[TKIJV CNGCTCPEG CGPVGT, RNGCUG EQPVCEV WU CV 978-750-
8400 QT UGPF CP G-OCKN VQ UWRRQTV@EQR[TKIJV.EQO.

X 1.1
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A.3 THDSI Python 3.7 Function 
import numpy as np 
 
def THDSI(cleanFFT, NoisyFFT, yAxis, binsize, threshold = 2, 
overlapFac=0,fs = None, TF = None): 
    """ 
    Calculates the Total Harmonic Distortion for Speech 
Intelligibility (THDSI) value at every time step of the Short Time 
Fourier Transform (STFT) spectra 
     
    Input 
    ----- 
    * cleanFFT : 2darray   
     
        Where the each row is the STFT spectra at a center time 
(i.e. the typical np.fft.rfft() result that is amplitude corrected) 
for the clean signal. 
         
    * NoisyFFT : 2darray   
     
        -Where the each row is the STFT spectra at a center time 
(i.e. the typical np.fft.rfft() result that is amplitude corrected) 
for the noisy signal. 
        -Must be the same shape as cleanFFT and computed from the 
same STFT settings (e.g. binsize) 
         
    * yAxis : 1Darray 
     
        Array of the  center bin frequencies resulting from the 
cleanSTFT and noisySTFT computations 
     
    * binsize : int 
     
        The binsize used in the STFT calculations for cleanSTFT and 
noisy STFT 
         
    * Threshold : float 
     
        (Optional) The amplitude threshold used to determine if a 
valid fundamental frequency is found. Default = 2 
         
    * OverlapFac : float 
     
        (Optional) Value 0 - 1 representing the percent of overlap 
desired Example: 0.5 means 50% overlap. Default = 0 
         
    * fs : int 
     
        (Optional) Sampling rate of the original data used to make 
cleanSTFT and noisySTFT. Including fs will result in metrics being 
printed about the processing parameters. Default = None 
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    * TF : 1Darray 
     
        (Optional): Transfer Function applied to the noisySTFT data. 
Must have length equal to the row size of noisySTFT. Default = None 
     
    Output 
    ------ 
    * THDSIvals : 1darray 
     
        Contains the computed THDSI values at each time step. 
Returns NaN if no valid frequency is found or if no harmonics are 
found. 
         
    * THDNSIvals : 1darray 
     
        Contains the computed THDNSI values at each time step. 
Returns NaN if no valid frequency is found or if no harmonics are 
found. 
         
    * harmonicVals : 1darray 
     
        Contains the computed summation of all harmoincs at each 
time step. Returns NaN if no valid frequency is found or if no 
harmonics are found. 
         
    * fundFreqs : 1darray 
     
        Contains the estimated fundamental frequency determined from 
the cleanSTFT spectra. Returns NaN if no valid frequency is found or 
if no harmonics are found. 
         
    """ 
         
    #Check input data quality 
    assert (np.shape(cleanFFT) == np.shape(NoisyFFT)),"Clean and 
Noisy signals are not the exact same length" 
    
    #Initialize variables 
    THDSIvals = [] 
    THDNSIvals = [] 
    harmonicVals = [] 
    fundFreqs = [] 
     
    #Print some metrics if given fs 
    if fs: 
        print("Freq res: {:.2f} [Hz]".format(fs/binsize)) 
        print("FFT Frame size: {:.0f} [ms]".format(binsize/fs*1000)) 
        if overlapFac != 0: 
            print("Increment between FFTs is {} [ms] - {}% 
overlap".format((binsize/fs*1000)*overlapFac,overlapFac*100)) 
        else: 
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            print("Increment between FFTs is {} [ms] - {}% 
overlap".format((binsize/fs*1000),overlapFac*100)) 
 
     
    ACF = 1/np.mean(np.hanning(binsize)) #1/mean 
    ECF = 1/np.sqrt(np.mean(np.hanning(binsize)**2)) #1/rms 
    for currCol, (cleanFFTData, noisyFFTData) in 
enumerate(zip(cleanFFT.T, NoisyFFT.T)): 
 
        maxIdx = cleanFFTData.argmax() 
 
        if np.any(TF): 
            #Compute corrected STFT from CNT transfer function and 
apply it to the noisyData before THDSI calc 
            noisyFFTData = noisyFFTData/TF 
                         
        fund = noisyFFTData[maxIdx] 
        if (fund > (threshold*np.mean(noisyFFTData))) & 
(yAxis[maxIdx]>20): #Threshold check      
            harmIdx = maxIdx 
            harmonics = 0 
            harmonicMultiplier = 2 
            while (maxIdx * harmonicMultiplier) < len(noisyFFTData): 
#Loop through harmonics 
                harmIdx = maxIdx * harmonicMultiplier 
                harmonics += noisyFFTData[harmIdx] 
                harmonicMultiplier += 1 
            if (harmIdx != maxIdx): #Harmonics founds, data is good 
                fundFreqs.append(yAxis[maxIdx]) 
                harmonicVals.append(harmonics) 
                THDSIvals.append(harmonics/fund*100) 
                THDNSIvals.append(((np.sum(noisyFFTData)-
fund)/fund)*(ECF/ACF)*100) #Remember to convert from ACF to ECF when 
summing to an energy value 
            else: #No harmoincs found so data no good. Write NaN 
                fundFreqs.append(np.nan) 
                harmonicVals.append(np.nan) 
                THDSIvals.append(np.nan) 
                THDNSIvals.append(np.nan) 
        else: #Threshold not met, write NaN 
            fundFreqs.append(np.nan) 
            harmonicVals.append(np.nan) 
            THDSIvals.append(np.nan) 
            THDNSIvals.append(np.nan) 
 
    return THDSIvals, THDNSIvals, harmonicVals, fundFreqs 
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